Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод ионного осаждения покрытий в вакууме

МЕТОД ИОННОГО ОСАЖДЕНИЯ ПОКРЫТИИ В ВАКУУМЕ  [c.125]

Метод ионного осаждения покрытий в вакууме основан на термическом напылении защитного металлического покрытия на защищаемую деталь в газовом разряде [70]. При этом обрабатываемая металлическая деталь (подложка) является катодом, испаритель — анодом тлеющего разряда. Металл, используемый в качестве покрытия (подложка), напревают любым методом электрическим, электронно-лучевым и др. Пары  [c.125]


Методы нанесения покрытий в условиях разрежения (вакуума), в зависимости от особенностей, превращения материала покрытия в парообразное состояние с последующей конденсацией на защищаемой поверхности, часто называемой подложкой, можно разделить на три вида катодное распыление, термическое напыление и ионное осаждение. Хотя настоящая книга целиком посвящена вопросу применения термического напыления в вакууме для нанесения защитных покрытий, целесообразно кратко рассмотреть и другие методы получения покрытий в вакууме, сравнив их достоинства и недостатки.  [c.5]

В последние годы получил развитие еще один метод нанесения покрытий в вакууме — ионное осаждение, представляющее собой термическое напыление в газовом разряде (ионизация и испарение материалов в вакууме). Материал покрытия испаряется при невысоком вакууме ( 10 Па) на подложку при этом подается достаточно высокий отрицательный потенциал относительно тигля с испаряемым металлом. Часть паров металла ионизируется в плазме газового разряда, и ионы осаждаются на заряженной подложке, образуя покрытие с высокой степенью однородности по толщине. Характерная особенность ионного осаждения — использование процесса бомбардировки поверхности подложки (катода) потоком ионов высокой энергии как перед осаждением покрытия для очистки поверхности, так и в процессе формирования покрытия. Ионизация осуществляется газовым разрядом (в среде Ar, Ne, Не), а термическое испарение материала покрытия резистивным, электронно-лучевым или электродуговым способами — в вакууме порядка 10 Па.  [c.11]

Преимущества метода ионного осаждения по сравнению с термическим напылением в вакууме заключаются в следующем имеется возможность обрабатывать ионной бомбардировкой подложку и поддерживать ее чистой до момента осаждения покрытия хорошая адгезия покрытия может быть получена и без предварительного нагрева подложки (за счет высокой энергии конденсирующихся атомов и интенсификации процесса диффузии и химических реакций) достигается высокая степень равномерности покрытия по толщине и увеличивается коэффициент использования паров металла. Недостатком метода ионного осаждения является необходимость мощной электронно-лучевой пушки, способной долгое время стабильно работать в условиях тлеющего разряда, а также более сложное оборудование вакуумной установки по сравнению с обычным методом термического напыления в вакууме (вакуумное оборудование для создания предварительного разрежения порядка 10 —Па, необходимость применения инертного газа и т. п.).  [c.14]


Каждый из рассмотренных выше методов нанесения покрытий в вакууме имеет определенные достоинства и недостатки. Так, метод катодного распыления, отличаясь большой универсальностью, ограничен сравнительно низкой скоростью осаждения покрытий термическое напыление в вакууме характеризуется высокой производительностью, но имеет существенный недостаток низкий коэффициент использования испаряемого материала метод ионного осаждения, позволяющий получать покрытия с высокой степенью однородности по толщине и с хорошей адгезией к основе, ограничен трудностью стабилизации плазмы разряда, а также сложностью оборудования, связанной с необходимостью использования инертных газов.  [c.15]

Попытка количественного сравнения различных методов нанесения покрытий в вакууме предпринята авторами работы [245], причем в каждом из методов учтены их разновидности. Так, метод термического напыления рассмотрен с точки зрения резистивного метода нагрева испаряемого материала, электронно-лучевого и взрывного с непрерывной догрузкой тигля порошком испаряемого материала. В методе катодного распыления рассмотрены обычное высокочастотное распыление и высокочастотное распыление при наличии отрицательного потенциала на подложке. Метод ионного осаждения представлен процессами с применением плазмы, получаемой в разряде постоянного напряжения и в высокочастотном поле, причем каждая из этих разновидностей рассмотрена с точки зрения резистивного и электронно-лучевого испарителя. Для возможности сравнения все рассматриваемые процессы нанесения покрытий были отнесены к вакуумной камере одного и того же размера — цилиндр диаметром 60 см.  [c.16]

Покровные покрытия наносят с помощью целого ряда методов, к числу которых относятся плазменное и ионно-плазменное напыление, детонационное напыление, химического осаждения из паров, ионное распыление, электронно-лучевое испарение и конденсация в вакууме, вакуумно-дуговое напыление и ряд других.  [c.332]

Химико-термические методы упрочнения поверхности для повышения износостойкости за счет увеличения поверхностной твердости (цементация, азотирование, цианирование, борирование и др. процессы) весьма эффективны для повышения сопротивления абразивному изнашиванию. Для улучшения противозадирных свойств создаются (посредством сульфиди-рования, сульфо-цианирования, селенирования, азотирования) тонкие поверхностные слои, обогащенные химическими соединениями, предотвращающими схватывание и задир при трении.. Большой эффект получается при использовании метода карбонитрации. Широко применяются электрохимические методы нанесения покрытий А1, РЬ, Sn, Ag, Au и др. При восстановлении деталей (в ремонте) используется электролитическое хромирование, никелирование, железнение и др. Значительная часть технологических задач, связанных с необходимостью повышения износостойкости, коррозионной стойкости, жаропрочности, восстановительного ремонта и др. решается при использовании методов металлизации напылением, включающих газоплазменную металлизацию, электродуговую, плазменную, высокочастотную индукционную металлизацию и детонационное напыление покрытий - наносятся металлы и сплавы, оксиды, карбиды, бориды, стекло, фосфор, органические материалы. Плазменное напыление используют для нанесения тугоплавких покрытий окиси алюминия, вольфрама, молибдена, ниобия, интерметаллидов, силицидов, карбидов, боридов и др. Детонационное напыление имеет преимущество в связи с незначительным нагревом покрываемой детали и распыляемых частиц. В последнее время активно развиваются методы нанесения износостойких покрытий в вакууме катодное распыление, термическое напыление, ионное осаждение. В зависимости от реакционной способности газовой среды методы напыления  [c.199]

В настоящее время для повышения износостойкости и коррозионной стойкости получили применение пленочные покрытия (толщиной 2—10 мкм) из нитридов (TiN, Ti (N ), ZrN), карбидов (Ti ), оксидов (AI2O3 и др.), обладающих высокой твердостью. Существует много методов создания адгезионных пленочных покрытий. Нанесение покрытий осуществляется осаждением продуктов химических реакций между компонентами газовой среды (например, хлорида титана и метана) на поверхности детали (инструмента) при 1000—1200 °С (метод VD). Другие методы предполагают реактивное или конденсационное осаждение в вакууме при более низкой температуре 450—500 °С, Формирование покрытия в вакууме осуществляется в три стадии I) получение материала покрытия в парообразном состоянии 2) перенос материала покрытия от испарителя к детали 3) осаждение (конденсация) молекул (ионов) материала покрытия на поверхности детали. Чаще применяют следующие методы нанесения покрытия конденсацию из плазменной фазы в условиях ионной бомбардировки (КИБ) реактивное электронно-лучевое плазменное осаждение (РЭП) активированное реактивное напыление (ARE). Не-  [c.347]


Эффективную противокоррозионную защиту оборудования обеспечивают покрытия, для получения которых могут быть использованы основные методы нанесения покрытий в вакуумег катодное распыление, термическое напыление и ионное осаждение. Из них наиболее перспективным вследствие высокой эффективности защитного действия является метод ионного осаждения в вакууме.  [c.125]

Ионное осаждение в вакууме позволяет получать почти беспористые покрытия толщиной порядка 1 мкм. Вследствие особенностей процесса ионного осаждения пористость, вызванную загрязнениями поверхности детали, можно регулировать либо вообще устранять. Низкая пористость ионных покрытий -связана также с тем, что атомы в осажденном покрытии имеют обычно плотную упаковку. Благодаря малой пористости по-жрытия, полученные методом ионного осаждения в вакууме, имеют большую защитную способность, чем покрытия, полученные другими методами.  [c.128]

Вакуумное испарение. Метод не обязательно связан с использованием ионов, но исторически явился первым методом формирования покрытий в вакууме, и уместно упомянуть о нем хотя бы в сравнительном плане. Суть метода сводится к осаждению паров материала. Создание высокоэффективных электронных пушек, обеспечивающих высокие скорости испарения, значительно расширило возможности метода. Помимо электронных пушек используются нагреватели из тугоплавких металлов. Введение в вакуммную камеру небольших добавок химически активных газов позволяет формировать покрытия оксидов, нитридов, карбидов и т. д. Энергия осаждаемых частиц соответствует характерным значениям энергии тепловых колебаний атомов, а скорость осаждения покрытий достигает десятков и сотен микрометров в час.  [c.74]

Состав недиффузионных покрытий необходимо выбирать таким образом, чтобы обеспечить совместимость материала покрытия и основы при температурах эксплуатации, а также высокую адгезию покрытия с основой. Эти покрытия наносят методами химического осаждения из газовой фазы, а также различными методами напыления (пламенного, плазменного, детонационного). В последние годы развиваются методы электронно-лучевого напыления покрытий в вакууме, а также напыление различных элементов и соединений с использованием электрических и магнитных полей (ионно-плазменное, в том числе магнетрон ное, катодное напыление, нанесение покрытий в тдёю-щем и высокочастотном разряде и т. д.). При достаточно высокой температуре процесса часть напыленного покрытия может превратиться в диффузионное.  [c.432]

Обеспечение удовлетворительных условий процесса нанесения покрытий успешно достигается методами физического осаждения в вакууме. Наиболее отработаны для производственных процессов ионновакуумные технологии нанесения покрытий из плазмы электрического разряда с холодным катодом, основанные на методе конденсации ве-п(ества в вакууме с ионной бомбардировкой,  [c.248]

Технологические процессы, связанные с использованием ионизированных атомов для упрочняющей обработки поверхностей трения, например ионное азотирование, хорошо освоены современной промышленностью. Ионно-лучевые технологии требуют применения вакуумной техники, высоких ускоряющих напряжений и в машиностроении стали широко использоваться лишь в последние два десятилетия. Очевидные преимущества этой группы методов включают легкость управления пучком заряженных частиц, возможность разгонять их до практически любой необходимой энергии и легко изменять вид используемых ионов, исключительную чистоту методов, воспроизводимость и контролируемость параметров обработки. Степень необходимого вакуума определяется средней длиной свободного пути частиц и требованиями к чистоте получаемых поверхностных стрз стур. При давлении порядка 10 Па средняя длина свободного пути частиц исчисляется метрами. В зависимости от энергии используемых частиц преобладающими оказываются процессы осаждения покрытий (энергия 10 —10 Дж), распыления обрабатываемой поверхности (10 —10 Дж), имплантации (10 —Дж). Рассмотрим кратко основные методы ионно-лучевой обработки материалов  [c.74]

Среди методов ФОП наибольшее распространение получил метод конденсации покрытий из плазменной фазы в вакууме с ионной бомбардировкой поверхностей инструмента (метод К.ИБ), разработанный Харьковским физико-техническим институтом АН УССР [2, 3, 5], а также метод реактивного электронно-лучевого плазменного осаждения покрытий из пароплазменной фазы в вакууме (метод РЭП) [23].  [c.13]

Главной особенностью вакуумного напыления методом конденсации ионной бомбардировкой (КИБ) является возможность подготовки поверхности образца путем ее очистки в тлеющем разряде, а также бомбардировкой ускоренными ионами. Бомбардировка ускоренными ионами приводит к частичному распылению материала образца, внедрению ионов в поверхностный слой и создает благоприятные условия для повышения адгезионной прочности покрытия с основой. Состав осажденного гюкрытия и прочность его сцепления с основой определяются составом газовой среды, содержанием остаточных элементов (СО2, О2, Н2О), уровнем вакуума и качеством подготовки поверхности. Для подготовки образцов перед напылением наиболее предпочтительна виброабразивная обработка с последующей очисткой в ультразвуковой ванне. Затем образцы следует промыть в горячей ванне и высушить в струе горячего воздуха.  [c.249]


Смотреть страницы где упоминается термин Метод ионного осаждения покрытий в вакууме : [c.244]    [c.22]    [c.310]    [c.127]   
Смотреть главы в:

Кислородная коррозия оборудования химических производств  -> Метод ионного осаждения покрытий в вакууме



ПОИСК



Вакуум

Иониты

Ионов

Метод осаждения

Методы покрытий

Осаждение

Осаждение ионное

Осаждение покрытий

Осаждение покрытий в вакууме

По ионная



© 2025 Mash-xxl.info Реклама на сайте