Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Граничные условия. Теорема единственности решения краевых задач

Граничные условия. Теорема единственности решения краевых задач  [c.47]

Выше была дана постановка различных гранично-начальных задач теории упругости, высказаны соображения о разрешимости и получены теоремы единственности. Остается открытым лишь вопрос о корректности поставленных задач. Дело в том, что вся вводимая в постановку за чачи информация — форма граничной поверхности, конкретные значения краевых и начальных условий — есть величины, определяемые, в конечном счете, из эксперимента. Поэтому построение решения имеет смысл осуществлять только в том случае, если малое (в определенном смысле) изменение исходных данных приведет к малому изменению решения.  [c.253]


Доказана теорема, согласно которой полученное неравенство устойчивости является достаточным условием единственности решения сформулированной краевой задачи для тел с зонами разупрочнения. Выведены экстремальные принципы механики закритического деформирования для тел с граничными условиями третьего рода. Получены соответствующие вариационные принципы.  [c.13]

Обоснование схемы. Краевые задачи, предусмотренные п. (1) и (2), представляют собой обобщение задач Я и р, сформулированных в 20.12 различие заключается лишь в том, что в рассматриваемом случае они должны-решаться для оболочки с изломом % и что на А. в каждой задаче должны выполняться два условия сопряжения. Примем, что теоремы существования задач Р п р здесь формулируются так же, как и в 20.12, 20.13. Тогда можно утверждать, что обсуждаемая схема соответствует случаю, когда тангенциальное закрепление — жесткое, т. е. когда изгибания срединной поверхности невозможны, а следовательно, задача Р при любых, достаточно гладких правых частях уравнений и граничных условий имеет решения, зависящие от г констант с/ (s), а задача р имеет решение (единственное) тогда и только тогда, когда выполнены г интегральных требований. В рамках этогО предположения обоснование схемы построения приближения (s) превращается, в сущности, в повторение рассуждений 20.12. Опуская их, оста-. новимся только на следующем обстоятельстве.  [c.319]

В газовой динамике внешних и внутренних течений различают еще два класса задач прямую и обратную. Прямая задача состоит в определении поля течения при заданной форме обтекаемого тела (для внешних задач) или канала (ддя внутренних задач) и заданных граничных условиях. Прямая задача сводится в общем случае к краевой задаче, для которой, как правило, не доказаны теоремы существования н единственности. Обратная задача состоит в определении поля течения при условиях, заданных на некоторой поверхности, и условиях в начальном сечении. При этом форма обтекаемого тела (или канала) не задана и определяется в процессе решения. Обратная задача сводится к задаче Коши. В обратных задачах о течении за отошедшей ударной волной задается форма ударной волны и в процессе решения находится форма обтекаемого тела. В обратной задаче теории сопла задается распределение скорости, например, па оси сопла, а поверхность сопла определяется в процессе решения.  [c.34]


Теорема единственности решения краевой задачи теории оболочек. Если из однородных граничных условий вытекает неравенство (5.32.9), которое будет называться условием единственности, то решение неоднородной краевой задачи будет единственным с точностью, быть может, до смеш гний срединной поверхности как жесткого целого.  [c.69]

Излагаются методы эффективного построения этих решений и много внимания уделяется обстоятельствам, при которых решения существуют и единственны. Эти вопросы в безмоментной теории решаются нетривиально. Общая линейная краевая задача моментной теории оболочек единообразна она заключается в интегрировании эллиптической системы уравнений с выполнением в каждой точке края (или краев, если область многосвязна) четырех граничных условий. Она всегда имеет единственное решение. Однако при переходе к описанной выше безмоментной краевой задаче картина становится весьма пестрой, так как тип уравнений, подлежащих интегрированию, может оказаться любым (эллиптическим, гиперболическим и параболическим). Различными по своему характеру оказываются и краевые задачи безмоментной теории это могут быть задачи типа Дирихле, задачи типа Коши, а также задачи, не предусмотренные существующей классификацией. К тому же может существовать несоответствие между типом краевой задачи безмоментной теории и типом уравнений, для которых ее надо решать. Например, задачу Дирихле иногда приходится решать для гиперболического уравнения, а задачу Коши — для эллиптического. Все это приводит к тому, что теоремы существования и единственности для краевых задач безмоментной теории формулируются далеко не единообразно и в них вопрос не всегда решается положительно. Однако такая ситуация не свидетельствует о принципиальной порочности самой идеи выделения в самостоятельное рассмотрение краевой задачи безмоментной теории. Каждая из описанных выше странностей краевых задач безмоментной теории свидетельствует об определенных особенностях искомого напряженно-деформированного состояния оболочки. Для широкого класса задач это будет показано в части IV.  [c.174]

Если поверхность (любого знака кривизны) не имеет бесконечно удаленных точек, ограничена только неасимптотическими краями и во всех точках этих краев она лишена свободы смещения в обоих тангенциальных направлениях, то такая поверхность не может изгибаться. Отсюда по теореме о возможных изгибаниях должно следовать, что полная краевая задача безмоментной теории при граничных условиях вида (17.34.1) на всех краях оболочки, не имеющей бесконечно удаленных точек, должна иметь решение (единственное) при любой, достаточно гладкой, нагрузке, если ни один из краев оболочки не касается асимптотических линий срединной поверхности. Справедливость этого утверждения доказана в 17.34 для сферического купола с плоским краем, а в 15.23 — для произвольной замкнутой оболочки нулевой кривизны с двумя неасимптотическими краями. Оно, по-видимому, останется правильным и в самом общем случае.  [c.261]

Естественно, возможно и другое сочетание граничных условий, допускаемое теоремами существования и единственности решения задач линейной теории упругости. Причем только при некоторых вариантах, как указано, например, Л. М. Флитманом [69], начально-краевая задача для полупространства распадается на две независимые.  [c.354]

Решение задачи о распространении тепла от мгаовенного источника энергии о для случая плоской симметрии рассматривалось в работе [45]. В этой же работе было впервые отмечено существование температурных волн конечной скорости (см. также [46]). В работах [7, 49, 64, 81] для уравнений параболического типа были доказаны теоремы существования и единственности задачи Коши и краевых задач, а также теоремы сравнения, которые с помощью автомодельных решений позволили получить достаточно общие условия конечной скорости распространения температурных волн. В работе [74] был построен пример так называемой остановившейся температурной волны, обладающей тем свойством, что тепло не проникает с течением времени в холодную среду, несмотря на неограниченный рост температуры, заданной на границе. В дальнейшем явление локализации тепла было подробно исследовано во многих работах (см., например, [40, 43, 47, 55, 69—71] и библиографию в [55, 70]). Было показано, что причиной локализации может быть так называемый граничный режим с обострением, при котором функция, заданная на границе, обращается в бесконечность в конечный момент времени. Причиной может быть также энерговыделение в режиме с обострением в среде с нелинейными объемными источниками.  [c.47]



Смотреть страницы где упоминается термин Граничные условия. Теорема единственности решения краевых задач : [c.50]    [c.186]    [c.292]    [c.320]   
Смотреть главы в:

Теория оболочек с конечной сдвиговой жесткостью  -> Граничные условия. Теорема единственности решения краевых задач



ПОИСК



I краевые

Граничные условия

Единственность

Единственность решения

Задача граничная (краевая)

Задача граничная (краевая) решение

Задача краевая

Задачи краевые - Решении

Краевой решение

Решение граничных задач

Теорема единственности

Теорема единственности решения задачи

Теорема о единственности решения

Теоремы единственности решения краевых задач

Условия граничные (краевые)

Условия для единственности решения

Условия краевые



© 2025 Mash-xxl.info Реклама на сайте