Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приложение А. Об условиях стационарности функции

Покажем, что в случае потенциального поля ударных импульсов на действительном движении динамической системы имеет место условие стационарности функционала, составленного в виде суммы функции —П и действия по Гамильтону. При этом фиксируются начальный и конечный моменты времени и 1 ), начальное и конечное положение системы, а также обобщённые координаты (не обязательно все) и (или) момент времени приложения ударных импульсов.  [c.134]


Действие этого постулата не ограничивается областью статики. Он приложим также и к динамике, где принцип виртуальных перемещений соответствующим образом обобщается принципом Даламбера. Так как все основные вариационные принципы механики — принципы Эйлера, Лагранжа, Якоби, Гамильтона — являются всего лишь другими математическими формулировками принципа Даламбера, постулат А есть в сущности единственный постулат аналитической механики и поэтому играет фундаментальную роль Принцип виртуальных перемещений приобретает особое значение в важном частном случае, когда приложенная сила Fi моногенная, т. е. когда она получается из одной скалярной функции — силовой. В этом случае виртуальная работа равна вариации силовой функции LJ qi,. .., ( ). Так как силовая функция равна потенциальной энергии, взятой с обратным знаком, то можно сказать, что состояние равновесия механической системы характеризуется стационарностью потенциальной энергии, т. е. условием  [c.100]

В [3.167] рассмотрена оболочка типа сферического купола или сферического пояса при действии периодически изменяющейся во времени радиальной сосредоточенной силы, приложенной в произвольной точке. Общее решение задачи получено в виде суммы сингулярного решения, не учитывающего граничные условия, и регулярного решения, удовлетворяющего заданным граничным условиям. Радиальное смещение и функция напряжений представлены в виде рядов по функциям Лежандра. Эти ряды получены с помощью теоремы сложения для сферических функций при переходе от решения с силой в полюсе сферы к решению с силой в произвольной точке сферы. Случай стационарной нагрузки получается предельным переходом, если частоту колебания нагрузки устремить к нулю. Приведены результаты численного расчета и дано сравнение с решением по классической теории.  [c.225]

В главе 6 на конкретных примерах показаны возможные пути обобщения результатов для нелинейных уравнений и систем. Два первых параграфа посвящены изложению общих результатов по сходимости метода конечных элементов для нелинейных задач с операторами монотонного типа и решению двух типичных нелинейных задач, распространенных в приложениях, с помощью многосеточных итерационных алгоритмов. Решение плоской задачи упругости демонстрирует возможность обобщения построенных алгоритмов и их обоснования для эллиптических систем зфавнений. Среди многих известных методов дискретизации бигармонического уравнения рассмотрена смешанная формулировка метода конечных элементов, приводящая к системе двух уравнений Пуассона с зацепленными краевыми условиями. В итоге обобщенная формулировка содержит только первые производные и отпадает необходимость использования сложных базисных функций из класса С (И ). Смешанная формулировка использована также для дискретизации стационарных задач Стокса и Навье — Стокса. Здесь применялись комбинации простых конечных элементов — линейные для скоростей и постоянные для давления.  [c.12]


Мы снова получаем задачу о нахождении стационарного значения функции, но эта функция — уже не первоначальная потенциальная энергия V, а видоизмененная потенциальная энергия V. Физически это вполне понятно. Поскольку мы не ограничиваем вариации положения системы условием (3,5.1), а допускаем произвольные вариации q., постольку будут действовать не только приложенные силы, но и силы, обеспечивающие выполнение заданной связи. Они тоже имеют свою потенциальную энергию, которую следует добавить к потенциальной энергии внешних сил. Поэтому преобразование потенциальной энергии путем добавления члена Kf — это не просто математический прием, а операция, имеющая реальный физический смысл. Преобразование потенциальной энергии в соответствии с методом множителей Лагранжа отражает наличие потенциальной энергии у сил, обеспечиваюи их выполнение заданных кинематических условий.  [c.107]

Скорости, индуцированные вихревой пеленой на диске винта, играют важную роль в процессе образования нестационарных нагрузок на лопасти и должны приниматься во внимание при исследовании переходных процессов. Однако связь между полем индуктивных скоростей и нестационарными нагрузками очень сложна. Изложенное выше применение вихревой теории дает наиболее простые формулы нестационарной аэродинамики винта, полезные для приложений к аэроупругости. При работе винта на режиме висения возмущение би(г, г])) скорости протекания в точке диска винта связано с возмущением df/dA местной нагрузки на единицу площади поверхности диска соотношением 6v = (dTldA)f2put>, где uo — средняя индуктивная скорость. Эта формула была получена для гармонического изменения нагрузки лопасти с частотой nQ во вращающейся системе координат, где п—не равное нулю целое число. Как уже говорилось, это выражение соответствует низкочастотной аппроксимации функции уменьшения подъемной силы лопасти. Независимо от того, рассматривается ли эта формула как результат вихревой теории или как дифференциальная формула импульсной теории, должно выполняться основное условие, состоящее в том, что изменение нагрузок винта происходит гораздо медленнее, чем изменение его вихревой системы. Лишь в этом случае формулы теории несущего диска могут быть применены как к возмущениям, так и к стационарным значениям скорости протекания.  [c.474]

Рассмотрим однородный образец полупроводника, в котором постоянное поле о создается приложенной извне э. д. с. так, что в образце устанавливается поток электронов и дырок. В стационарном состоянии df/dt = 0. Если поле Ео однородно, то V/ = 0 и сила F, действующая на дырки и электроны, равна еЕо (знак плюс относится к дыркам, минус —к электронам). Не теряя общности, можно выбрать систему координат так, чтобы ось 2 совпадала с направлением электрического поля, тогда Ео = 1гЕо. Используя эти условия и вводя в (13.8.1) время релаксации Тр с учетом того, что pg = tripV , можно получить для функции распределения дырок следующее уравнение  [c.327]

Обычно само понятие стационарного движения рассматривается лишь для гамильтоновой системы. Следуя Раусу, его обычно определяют как движение, при котором изменяются лишь циклические координаты, а остальные координаты, называемые позиционными, остаются постоянными. Циклические координаты оказываются, попросту, линейными функциями времени, а отвечающие им циклические импульсы, также постоянны. В теории устойчивости стационарньк движений, развитой Раусом, учитывается, что относительно циклических координат такие движение всегда неустойчивы (возмущения растут линейно со временем). Таким образом, речь должна идти об устойчивости относительно части переменных — позиционных координат и импульсов. Такого рода устойчивость мы называем устойчивостью по Раусу. Вопрос об устойчивости по отношению к циклическим импульсам должен быть рассмотрен особо. Как показали Раус и его последователи, при естественных дополнительных условиях (хотя и не всегда) устойчивость относительно циклических импульсов следует из устойчивости по Раусу. Поэтому в приложениях циклические импульсы обычно не требуют дополнительных рассмотрений. Именно так обстоит дело и в проблеме данной статьи.  [c.244]


В предыдущем разделе рассмотрена задача поиска стационарных значений явной функции. Во многих приложениях, однако, требуется найти стацнонарное значение интеграла, а не фуик-цин. Поскольку известно, что интеграл является функционалом, будут рассмотрены условия, необходимые, для его стационар- ности.  [c.158]


Смотреть страницы где упоминается термин Приложение А. Об условиях стационарности функции : [c.170]    [c.20]    [c.265]    [c.315]    [c.6]    [c.206]   
Смотреть главы в:

Вариационные методы в теории упругости и пластичности  -> Приложение А. Об условиях стационарности функции



ПОИСК



Условия в для функции Эри

Условия стационарной

Функция условия стационарности



© 2025 Mash-xxl.info Реклама на сайте