Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Циклическая релаксация и циклическая ползучесть

Циклическая релаксация и циклическая ползучесть  [c.67]

Под эффектами циклической релаксации и циклической ползучести обычно понимают смещение петли пластического гистерезиса, происходящее в процессе повторных нагружений. Если цикл ограничен по деформациям (жесткое нагружение), при таком смещении изменяется его среднее напряжение, это называют циклической релаксацией. При ограничении цикла по напряжениям происходит постепенное накопление деформации (циклическая ползучесть). Любой из указанных эффектов, в зависимости от условий, в большей или меньшей степени может проявляться в процессе стабилизации диаграммы циклического деформирования. У циклически стабильных (стабилизированных материалов) они наблюдаются в экспериментах лишь при наличии асимметрии в условиях нагружения, которая при этом может быть даже малозаметной (настолько, что цикл ошибочно полагают симметричным). Упрощения, которые пришлось использовать, чтобы получить уравнение состояния (3.30), позволяющие достаточно просто и в то же время адекватно (см. 15) отразить основные закономерности повторно-переменного деформирования, исключили из рассмотрения эффекты циклической релаксации и циклической ползучести. Поэтому, строго говоря, эти уравнения справедливы лишь в условиях симметричного цикла (понятие  [c.67]


Как известно, существуют различные концепции, объясняющие механизм циклической релаксации и циклической ползучести [69]. Выше эти эффекты (применительно к металлическим сплавам) рассматриваются как проявление обычных реономных свойств материала в условиях несимметричного циклического нагружения. Попробуем применить данный подход к изучению влияния различных условий, в том числе таких, при которых можно предполагать аномальное протекание процессов циклической релаксации и циклической пол- зучести.  [c.71]

Также аномально может протекать и циклическая ползучесть, если она следует за некоторой характерной предысторией нагружения. Например, если циклической релаксации предшествовал этап ползучести, вышагивание петли будет происходить в направлении, обратном направлению предварительной ползучести (независимо от знака среднего напряжения цикла).  [c.213]

Важными последствиями процесса ползучести являются не только недопустимо большие перемещения, но также и разрыв вследствие ползучести, термическая релаксация, динамическая ползучесть при циклических нагружениях и циклических температурных воздействиях, ползучесть и разрыв в условиях многоосного напряженного состояния, накопление эффектов ползучести и совместное проявление эффектов ползучести и усталости. Все эти вопросы заслуживают пристального внимания.  [c.433]

С различными скоростями деформирования, вторая — для описания циклической релаксации и третья — для циклической ползучести. 0 проиллюстрировано на рис. 13.20. График зависимости tf от Nf для роторной стали I r-lMo-V V изображен на рис. 13.21.  [c.460]

В соответствии с принципом подобия диаграммы циклического деформирования получаются замкнутыми при активном изотермическом и неизотермическом нагружении, а также в циклах с выдержками, ограниченных по деформациям. Действительное поведение д одели, отражаемое ее исходными уравнениями, характеризуется дополнительно явлениями циклической релаксации и ползучести, состоящими в постепенном смещении петли гистерезиса. Естественно, что петля при этом незамкнута, но размахи деформаций и напряжений практически мало меняются в процессе такого вышагивания .  [c.109]

В процессе испытаний при длительном малоцикловом нагружении осуществляется сочетание процессов ползучести (релаксации) и накопления длительных статических повреждений, с одной стороны, и процессов циклического пластического деформирования и накопления усталостных повреждений, с другой, причем эти процессы могут влиять друг на друга. Поэтому изучение сопротивления длительному малоцикловому деформированию и разрушению (длительной малоцикловой прочности) должно основываться на закономерностях ползучести и длительной статической прочности и на закономерностях малоцикловой усталости и сводится к установлению закономерностей этого взаимного влияния.  [c.211]


На указанных установках осуш ествляются длительные циклические испытания при мягком и жестком нагружении по заданной программе (в том числе и с выдержками) с получением диаграмм деформирования, кривых циклической ползучести (релаксации) и кривых усталости.  [c.235]

Установки имеют достаточно широкие возможности воспроизводить различные независимые друг от друга программы нагружения и нагрева произвольные типы программ нагрузок и температур статические и циклические испытания в условиях постоянства скорости нагружения или деформирования испытания по режиму изотермического и неизотермического малоциклового деформирования (мягкое, жесткое, а также их асимметричные циклы) и по режиму изотермической и неизотермической (в том числе и малоцикловой) ползучести и релаксации. Точность поддержания регулируемых параметров (нагружение, нагрев) 1 %  [c.248]

Для проведения испытаний с целью изучения закономерностей неизотермической малоцикловой прочности, а также неизотермического деформирования используются установки растяжения — сжатия, снабженные системами программного регулирования. В этих установках основные решения вопросов управления режимами неизотермического нагружения, измерения процесса деформирования и нагрева, регистрации параметров соответствуют использованным в исследованиях сопротивления деформированию и разрушению в условиях длительного малоциклового нагружения, а также в описанной выше крутильной установке. Применены системы слежения с обратными связями по нагрузкам (деформациям) и температурам, отличающиеся непрерывным измерением и регистрацией основных характеристик процесса (напряжение, деформация, температура) в форме диаграмм циклического деформирования, развертки изменения параметров во времени, а также кривых ползучести и релаксации при однократном и циклическом нагружении.  [c.253]

Учет деформации ползучести в цикле при изотермическом малоцикловом нагружении, как одного из факторов, определяющих разрушение, предложен также в работах [13, 85] и др. Для расчета деформаций циклической ползучести приходится преодолевать значительные трудности даже для деталей простых форм и простых условий циклического нагружения. Установление закономерностей циклической релаксации экспериментальным путем является пока еще необходимым условием для оценки долговечности. Однако эти закономерности, установленные в опытах, в дальнейшем можно использовать в расчетах.  [c.112]

При анализе критериев и границ существования приспособляемости наряду с использованием простейшей диаграммы деформирования идеально пластичного тела привлекаются механические дискретные и статистические структурные модели тел В дискретных моделях [37] рассматривается система одновременно деформирующихся на одинаковую величину подэлементов, наделенных различными упругопластическими и реологическими свойствами. Это позволяет описать влияние скорости деформирования на диаграмму растяжения металла, эффект Баушингера и циклическое упрочнение при малоцикловом нагружении, ползучесть и релаксацию при выдержках, а также воспроизвести деформационные процессы при сложном, в том числе неизотермическом нагружении. Тем самым использование моделей способствует введению надлежащих уравнений состояния в вычислительные решения задач о полях упругопластических деформаций при термоциклическом нагружении. На этой основе рассматривались вопросы неизотермического деформирования лопаток и дисков газовых турбин, образцов при термоусталостных испытаниях и, ряд других приложений.  [c.30]

Задачи, связанные с циклической релаксацией, выдержками па стадии разгрузки, существенным изменением напряжений при выдержках и т. д., могут быть, по-видимому, решены с использованием рассмотренных выше обобщенных кривых длительного циклического деформирования, но с применением внутри полу-цикла гипотез ползучести типа гипотезы упрочнения, наследственных гипотез и т. п. Такой подход нуждается в дополнительной экспериментальной проверке.  [c.60]


Временные эффекты (релаксация и ползучесть) оказывают противоположное влияние на характер циклического деформирования. Под их воздействием разность размахов напряжений 65 в соседних полуциклах упругопластического деформирования при непрерывном увеличении от цикла к циклу параметра 5 е уменьшается, что отражает увеличение скорости накопления деформаций в результате ползучести (сплошные линии).  [c.237]

Для случая циклического деформирования при высоких температурах с выдержками под нагрузкой, т. е. при сочетании циклического деформирования и ползучести, можно сделать предположение о том, что деформирование на активном участке нагружения внутри полуцикла рассматривается на основе деформационной теории, а на участке ползучести (релаксации) — на основе теории старения.  [c.50]

Рис. 7.36. Реологическая функция частично реономного материала Рис. 7.37. Циклические ползучесть и релаксация Рис. 7.36. Реологическая функция частично <a href="/info/136399">реономного материала</a> Рис. 7.37. <a href="/info/557780">Циклические ползучесть</a> и релаксация
Дальнейшие исследования прочности при длительном статическом и циклическом нагружении осуществляются в двух основных направлениях сопротивление длительному циклическому нагружению с учетом циклических упругопластических деформаций и деформаций ползучести и релаксации и кинетика трешин статического и циклического нагружения при повышенных температурах.  [c.68]

Основные закономерности малоциклового деформирования в настоящее время уже достаточно хорошо изучены [7, 35, 43, 44, 101, 122, 123], и результаты этих исследований кратко обсуждены в гл. 1. В данном разделе рассматриваются особенности деформирования и разрушения конструкционных материалов при высоких температурах, когда проявляются температурно-временные аффекты ползучесть, релаксация и структурные изменения материала. Особое внимание уделено исследованиям при циклическом нагружении в условиях интенсивного деформационного старения, сопровождающегося сильным изменением прочностных и пластических свойств материала во времени. Причем интенсивность и характер этих изменений зависят также и от условий деформирования, и в первую очередь от формы цикла и частоты нагружения. Учет изменений пластических свойств во времени, определяющих сопротивление материала малоцикловому и длительному статическому разрушению, требует проведения сложных экспериментов в условиях, приближающихся к эксплуатационным, во многих случаях характеризующихся сильным протеканием деформационного старения.  [c.166]

Интенсивное развитие процессов ползучести, релаксации, а также структурных изменений определяет особенности инициирования и развития трещин при высокотемпературных статических и циклических испытаниях. В этих случаях временной фактор, а в связи с этим частота нагружения и форма цикла оказывают существенное влияние на сопротивление развитию трещин.  [c.227]

I — ползучесть и длительная прочность 1 — деформация растяжением и разрушение при растяжении — релаксация 2 — ползучесть при циклическом напряжении 2 — динамическая ползучесть 3 — малоцикловая усталость 3 — высокотемпературная усталость 4 — термическая усталость 5 — термические скачки деформации 5 — ползучесть при циклическом изменении температуры  [c.12]

Анализ эпюр Эг позволяет определить предельное смещение петли пластического гистерезиса и в случае более сложных циклов. Вначале рассмотрим симметричный цикл с равными по длительности и параметру жесткости J = —dr/de выдержками в обоих полуциклах (рис. 3.28). Эпюры Эг для четырех характерных состояний этого цикла показаны на рис. 3.29. В силу симметрии циклическая релаксация (или ползучесть) здесь исключены, смещение петли возможно лишь при наложении некоторого среднего напряжения или средней деформации е . Как было отмечено, при этом изменится только состояние подэлементов группы II (заштрихованная область на рис. 3.29). Рассматривая как амплитуду деформации и представляя отмеченную на рисунке площадь как разность двух эпюр ОАВ и O D, получим выражение, полностью совпадающее с (3.43).  [c.72]

Закономерности, рассмотренные в данном параграфе, характеризуют условия постепенного смещения петли пластического гистерезиса в процессе циклических нагружений и предельные значения этих смещений для жесткого и мягкого цикла. Форма петли, как было показано ранее, в основном (в предположении ее замкнутости) отражается уравнением состояния (3.30) с помощью последнего определяются также кривые ползучести и релаксации напряжений при различных программах нагружения. Возможность расчленения общей задачи описания процессов реономного деформирования на две части, которые могут решаться последовательно, естественно, упрощает анализ, оно удобно при решении прикладных задач.  [c.76]

Сложнее ыиклическое нагружение. Циклическая релаксация и циклическая ползучесть склерономного материала  [c.96]

Наряду с усталостными явлениями при теплосменах, происходящих в отсутствие внешних силовых воздействий, может наблюдаться еще и постепенное накопление пластических деформаций в тех направлениях, по которым эти деформации не стеснены имеющимися закреплениями испытуемого образца или конструкционного элемента. Появление таких деформаций связывают с несколькими причинами [13, 20]. Одной из них является локальная высокотемпературная и циклическая ползучесть, сопровождающаяся релаксацией возникающих в каждом цикле само-уравновешенных напряжений первого и второго рода. Общим итогом этих локальных деформаций ползучести, протекающих главным образом в моменты повышения температуры, является нарастающее от цикла к циклу макроскопическое формоизменение тела. Одностороннее накопление макроскопических мгновеннопластических деформаций может иметь место также при сочетании термоциклирования с мягким силовым нагружением (например, случай циклических теплосмен в образце, растянутом силой веса некоторого груза).  [c.30]


Экспериментальная программа, показавшая хорошее соответствие уравнений (1.2.8), (1.2.9) опытным данным, была проведена на стали Х18Н10Т при 650° С в условиях мягкого и жесткого нагружений с включением в цикл выдержег при постоянном напряжении. Вместе с тем в реальных эксплуатационных условиях материал в зонах концентрации, как правило, на стадии высокотемпературной выдержки работает в промежуточном между ползучестью и релаксацией режиме, когда в результате проявления реологических и циклических свойств происходит перераспределение напряжений и деформаций во время отдельного нагружения и по числу циклов (рис. 1.2.1, е).  [c.26]

С другой стороны, при выборе эксплуатационного цикла не следует принимать значения длительности, близкие к наиболее повреждающему циклу, так как в этом случае ресурс работы изделия будет сокращен. Причина такого влияния цикла малой длительности, в котором выдержка составляет минуты, заключается в кинетике релаксационного процесса, происходящего в течение выдержки. Характер изменения термонапряжений в процессе релаксации существенно различен в течение выдержки основная релаксация напряжений, развитие деформации ползучести (а следовательно, и повреждаемости) происходят именно в первые минуты процесса выдержки. Цикл без выдержки при /max не содержит деформации ползучести (если не считать кратковременную ползучесть, развивающуюся в процессе нагружения до выхода на /max) циклу с выдержкой 10— 15 мин соответствует деформация ползучести, несущественно превышающая деформацию при Тв=1- 5 мин, а длительность нагружения во втором случае значительно больше. Таким образом, при термонагружении циклами малой длительности быстро возрастают и число циклов и циклическая деформация ползучести, что и обусловливает минимальное время до разрушения  [c.79]

Пример релаксации термических напряжений в жестко закрепленном стержне при его нагреве и выдержке в течение 10,7 мин и схема процесса развития деформаций приведены на рис. 39. Процесс циклического термического нагружения, при котором каждый цикл осуществляется с выДержкой при максимальной температуре, сопровождается процессом циклической ползучести, однако значительно более сложным, чем циклическая ползучесть при изотермическом нагружении. Наиболее существенно то, что в каждом цикле при охлаждении материал деформируется нагрузкой противоположного знака (в рассматриваемом случае — растяжением), которая вызывает пластическую деформацию. Если принять, что процессы развития деформаций ползучести при релаксации напряжений и постоянном напряжении — процессы одного типа, при которых большое значение имеет степень искажения решетки кристаллов, то влияние холодного наклепа, происходящего в каждом цикле термонагру-жения, должно быть значительным. Оно проявляется в уменьшении числа циклов до разрушения (см. тл. III) подобно тому, как при предварительном пластическом деформировании снижаются длительная статическая прочность (время до разрушения) и пластичность. В табл. 12 приведены значения этих характеристик, полученные при испытании сплава ХН77ТЮР по режиму, соответствующему техническим условиям на сплав /=750°С 0=350 МПа. Величина наклепа определялась степенью пластического деформирования образцов  [c.103]

Разработанные методы расчета напряженного состояния при циклическом нагружении [20] позволяют определить величину исходного напряжения Отах в любом цикле, если известны первичные характеристики материала — диаграммы деформирования при циклическом нагружении. Однако дальнейший расчет изменяющихся в течение цикла напряженного и деформированного состояний выполняют по уравнениям ползучести, предложенным для одноциклового нагружения, т. е. при анализе любого цикла принимают закон изменения напряжений, наблюдающийся в первом цикле, что объясняется отсутствием экспериментальных данных по циклической ползучести и релаксации.  [c.105]

Установление закона циклической релаксации необходимо для расчета на прочность при термоциклическом нагружении с выдержками при максимальной температуре цикла. Развивающаяся в течение выдержки в цикле деформация ползучести ее и действующее в этот период напряжение являются основными факторами, определяющими степень накопленного за N циклов статического повреждения. Для случая жесткого нагружения материала с выдержкой при максимальной температуре Эд" мундс предлагает накопленное повреждение оценивать по вели-  [c.111]

Циклическая релаксация термических напряжений, происходящая в течение выдержек образцов при = шах в закрепленном состоянии, происходит по экспоненциальному закону, однако с меньшей скоростью уменьшения напряжений, чем при одноцикловом нагружении. Поэтому величина эквивалентного напряжения за период выдержки в цикле оказывается большей, чем определенная по справочным кривым релаксации. В основном, уменьшение напряжений из-за релаксации, а следовательно, большая доля развивающихся дефомраций ползучести наблюдаются в первый период выдержки в цикле, что и определяет паи-  [c.189]

При циклическом деформировании в упругопластической области возникают пластические деформации, накапливающиеся циклически (за каждый цикл возникает деформация гистерезиса, обозначенная на рис. 4 2sp) и односторонне (Авр,), за счет циклической анизотропии [15], процессов релаксации и ползучести при выдержках. Для деформационной оценки накопленного повреждения используется уравнение кривой малоцикдовой усталости в начально предложенной форме [16]  [c.11]

Это деление в определенной мере является условным, так как в ряде случаев установки ОНД позволяют реализовывать трехосное нагружение, установки ОНД или ОН К могут быть переделаны в установки ОНКД и т. д. Классифицируют установки также по способу создания усилия непосредственный (путем подвески калиброванных грузов), механический (с ручным и электрическим приводом), электромагнитный, гидравлический и электро-гидравлический. Непосредственный и электромагнитный способы в основном применяют при изучении явлений, связанных с временными эффектами (ползучестью, релаксацией и т. п.) механический и гидравлический — при изучении статического и циклического стационарного нагружения электро-гидравлический — при нестационарном нагружении. В ряде случаев применяют и другие способы создания нагрузок, например термоциклирова-ние (создание напряжений за счет нагрева и охлаждения стесненного образца), но они ограничены специальными областями исследований.  [c.13]

Циклические ползучесть и релаксация. При выводе уравнений состояния (7.38)—(7.40) игнорировалось различие диаграмм деформирования реономных и склерономных стержней. Получаемая ошибка, малозаметная в каждом этапе нагружения, в определенных условиях может накапливаться. Например, циклическое несимметричное нагружение в соответствии с указанными уравнениями дает замкнутую (неподвижную) петлю пластического гистерезиса фактически часто наблюдается постепенное сползание петли вследствие реономности материала — в зависимости от условий возникают эффекты, называемые циклической ползучестью (задаются напряжения) или циклической релаксацией (задаются деформации). При непосредственном расчете кинетики деформаций в стержнях модели (без использования допущений, принятых при выводе указанных уравнений состояния) эти эффекты находят отражение. Однако можно воспользоваться уже рассмотренными методами анализа (исследование эпюр распределения упругих деформаций) для получения асимптотических решений в общей форме, т. е. определения границ сползания петель гистерезиса, если они существуют, и определения условий, в которых циклическая ползучесть происходит неограниченно (вплоть до ква-зистатического разрушения).  [c.210]


Рассмотрение поведения эпюр Эг позволяет проследить за эффектами циклической ползучести после произвольной предыстории. Пусть, например, циклическому жесткому нагружению в пределах ei jr j предшествовало неупругое деформирование до деформации ео. Если не учитывать циклической релаксации, эпюры Эг в экстремальные моменты цикла будут проходить так, как это показано на рис. 7.38 линиями О А B D и OEFG. Напряжение в точке 1 (рис. 7.39, а) может быть больше, чем в точке 2, но в область напряжений, превышающих Егц, большее число стержней попадает в полуцикле сжатия (см. рис. 7.38). Вследствие релаксации напряжений в этих стержнях (стремление к симметричному циклу) общее напряжение Ег при этом возрастает и асимметрия цикла в процессе циклической релаксации увеличивается (в пределе — на величину, соответствующую эпюре HILE) (см. рис. 7.38).  [c.213]

Предсказанные моделью эффекты аномального протекания циклической ползучести и релаксации были обнаружены экспериментально. На рис. 7.39 приведены диаграммы при исходном нагружении и после стабилизации, полученные в испытаниях образцов из стали Х18Н9Т при 600° С [13]. Предсказанное значение До в первом опыте — 1,75 кгс/мм опытное — 1,43 кгс/мм . Во втором опыте получен сдвиг петли на величину Де= 0,080% (предсказано 0,086%).  [c.213]

Рис. 7.39. Аномальные циклическая релаксация а) и циклическая ползучесть (б) стали Х18Н9Т при 600° С Рис. 7.39. Аномальные циклическая релаксация а) и <a href="/info/557780">циклическая ползучесть</a> (б) стали Х18Н9Т при 600° С
Для изучения нсизотермической малоцикловой прочности при растяжении-сжатии и кручении используют стенды, снабженные системами программного регулирования [15, 71, 97], максимальное усилие растяжения и сжатия которых составляет 100 кН. В этих установках-Применены системы слежения с обратными связями по нагрузкам (деформациям) и температурам, отличающиеся непрерывным измерением и регистрацией основных характеристик процесса в форме диаграмм циклического деформирования, развертки изменения параметров во времени, а также кривых ползучести и релаксации при однократном и циклическом нагружении.  [c.150]

Аналогичная ситуация возникает при несимметричном циклическом нагружении с контролируемыми напряжениями (/ = О, мягкое нагружение). Релаксация максимальных напряжений в подэлемен-тах групп Г и 1Г (см. рис. 3.22) должна компенсироваться в этом случае ростом напряжений в группе II" упругих подэлементов за счет увеличения деформации биах, тогда как амплитуда деформации практически постоянна, поскольку определяется неизменной амплитудой напряжений. Предельный цикл (рис. 3.25), в котором все несимметрично работающие подэлементы деформируются упруго, определяется с помощью распределения Эг, что и в случае жесткого нагружения (см. рис. 3.22). Поэтому выражение (3.43), связывающее среднее напряжение цикла с амплитудой е и средней деформацией = 2 — а> остается в силе, только на этот раз аргументами являются Га — Гь/" (б /гь) И г , а из формулы определяется е . Отличие циклической ползучести от циклической релаксации состоит в том, что если во втором случае стабилизация цикла неизбежна (практически она наступает довольно быстро), то в первом накопление деформации при достаточно высоком уровне максимальных напряжений цикла может быть неограниченным (вплоть до разрушения). Такая ситуация возникает, если заданное значение > > Гп (1 —f Как видно из рис. 3.24, отображающая точка  [c.70]


Смотреть страницы где упоминается термин Циклическая релаксация и циклическая ползучесть : [c.461]    [c.100]    [c.46]    [c.213]    [c.125]    [c.55]    [c.204]    [c.114]    [c.113]    [c.280]   
Смотреть главы в:

Пластичность и ползучесть элементов конструкций при повторных нагружениях (БР)  -> Циклическая релаксация и циклическая ползучесть



ПОИСК



Релаксация

Сложное циклическое нагружение. Циклическая релаксация и циклическая ползучесть склерономного материала

Циклическая ползучесть

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте