Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы экспериментального исследования коррозии металла

МЕТОДЫ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ КОРРОЗИИ МЕТАЛЛА  [c.112]

Обеспечение высокой коррозионной стойкости деталей, узлов, агрегатов, двигателей и в целом самолетов было в то время одной из важных проблем. На основе систематических исследований коррозии металлов и широких экспериментальных работ созданы эффективные методы защиты от коррозии самолетов, двигателей, агрегатов и приборов, что обеспечивает надежную их эксплуатацию в различных климатических условиях.  [c.337]


Одной из основных задач, стоящих перед коррозионистами, является развитие научных исследований процессов коррозии и разработка на их основе более эффективных методов противокоррозионной защиты металлов. Для этого необходимо использование последних достижений в области экспериментальной физики, физической химии и металлографии, в частности более точных и удобных ускоренных методов определения коррозионной стойкости металлов, сплавов и их заменителей.  [c.426]

В книге изложены основы механохимии твердого тела применительно к проблеме защиты деформированных металлов от коррозии. На основе термодинамического и кинетического анализа механохимических явлений на границе фаз твердое тело — жидкость и экспериментальных исследований рассмотрена модель механохимического эффекта (ускорения растворения металла при деформации) и описано явление, названное хемомеханическим эффектом. Установлены закономерности влияния напряженного состояния и тонкой структуры металла на коррозионную стойкость и образование коррозионных элементов на поверхности неоднородно деформированных участков металла и сварных соединений. Рассмотрены некоторые методы защиты металлов, вопросы коррозионно-механической прочности труб, способы механохимической обработки поверхности металла.  [c.2]

В связи с этим в отечественной и зарубежной литературе в последние годы появился целый ряд работ, посвященных приложению современных математических методов к задачам коррозии и защиты металлов, и интерес к этой проблеме все более возрастает. Несмотря на известные трудности в развитии такого подхода (связанные как с рассматриваемыми в дальнейшем специфическими особенностями коррозионных процессов, так и с приверженностью многих коррозионистов чисто экспериментальным методам), к настоящему времени уже разработаны некоторые эффективные методы коррозионных расчетов и с их помощью получены данные, во многом дополняющие и обобщающие результаты экспериментальных исследований. Однако опубликованные результаты таких работ до сих пор недостаточно обобщены и систематизированы, а также не всегда представлены в виде, отвечающем потребностям практиков.  [c.5]

Несмотря на ограниченное число подобных исследований, появляется реальная возможность сопоставить найденные различными авторами скорости атмосферной коррозии металлов в период их увлажнения. Если имеются данные о концентрациях агрессивных примесей, то удается рассчитать и ускорение коррозии. В табл. 3 сопоставлены данные ряда авторов по коррозионному поведению цинка в различных климатических районах. Несмотря на различные методы измерения времени увлажнения металла и разный подход к обработке экспериментального материала, расхождения в величинах скоростей коррозии цинка в сельской атмосфере оказывается незначительными. С полным основанием можно считать, что средняя скорость коррозии цинка в открытой атмосфере сельской местности равна 3,5-10 г1м -ч (с точностью до 20%).  [c.187]


В первой статье сборника рассматривается целесообразность использования понятия контролирующего фактора для характеристики механизма защитного действия и систематизации различных видов антикоррозионной защиты. Остальные работы сборника посвящены конкретным вопросам экспериментального исследования процессов коррозии и защиты металлических систем. В сборнике нашли отражение такие важные разделы, как исследование газовой коррозии при термообработке сплавов, коррозии и защиты металлов при травлении в кислотах, кислотостойкости металлов при повышенных температурах, коррозии нового металлического конструкционного материала — титана, его сплавов, сплавов ниобия с танталом и новые исследования по межкристаллитной коррозии нержавеющих сталей. В сборнике помещены последние работы по исследованию коррозионной усталости сталей и по коррозии и защите в некоторых производствах химической промышленности. Цель сборника — на основе современных методов исследования и имеющихся научных достижений указать некоторые новые пути и дать вполне определенные рекомендации нашей промышленности по борьбе с коррозионным разрушением.  [c.3]

Дисциплина Коррозия и защита металлов базируется на экспериментальных исследованиях, поэтому для ее усвоения необходимо не только изучить основы теоретического курса, но и овладеть современными экспериментальными методами исследования в этой области.  [c.5]

В данном пособии мы даем только три работы на газовую коррозию. Однако эти задачи подобраны так, что, выполнив их, учащийся сможет достаточно ознакомиться с областью и основными приемами исследования газовой коррозии экспериментальным установлением кинетики окисления металлов и определением основных законов окисления ( работа № 1,) и установлением температурной зависимости окисления (работа № 2) стандартным методом массовых испытаний жаростойкости металлов (работа № 3).  [c.33]

Потенциостатический метод получения поляризационных кривых широко используется последние 10—15 лет коррозионистами для изучения электродных процессов на металлах в растворах электролитов. Однако результаты, полученные этим методом, сильно зависят от методики измерения, что не всегда учитывается исследователями. В статье рассматриваются основные принципы и варианты использования потенциостатического метода в коррозионных исследованиях без освещения истории вопроса [1], возможностей метода для выяснения тонкого механизма электродных процессов [2] и его экспериментального оформления для решения конкретных задач, которые должны решаться с учетом современных представлений о механизме коррозии [3—8].  [c.9]

Большую роль при определении области адсорбции ингибиторов играет потенциал нулевого заряда. Эта характеристика металла, как известно, может явиться важным ориентиром для выбора ингибиторов коррозии, а также при исследовании механизма коррозионных процессов. Один из методов определения потенциала нулевого заряда — измерения зависимости емкости двойного электрического слоя от потенциала в разбавленных растворах поверхностно-неактивных электролитов. Такие данные могут быть получены при измерении импеданса. В соответствии с теорией двойного слоя в разбавленных растворах поверхностно-неактивных электролитов на кривых зависимости емкости от потенциала должен быть минимум, потенциал которого равен потенциалу нулевого заряда металла. Экспериментальные данные, полученные на ртути, хорошо согласуются с этими теоретическими представлениями [13].  [c.29]

Отсутствие совершенных средств контроля зарождения и развития повреждений металла, общепринятых принципов назначения новых сроков службы оборудования и трубопроводов с учетом их фактического состояния и условий работы не позволяют осуществлять высокоточное прогнозирование момента отказа конструкции. Оценку показателей надежности и определение остаточного ресурса оборудования и трубопроводов по зафиксированным параметрам их технического состояния проводят согласно научно-технической документации [57, 62-65] и методикам [30, 64, 66-81, 89 91]. Оценку фактической нагруженности оборудования и трубопроводов выполняют расчетными методами с учетом фактической геометрии и размеров конструкций, вида и величины выявленных дефектов и вызываемой ими концентрации напряжений, а также результатов экспериментальных исследований напряженно-деформированного состояния металла и изменения его физико-механических свойств. За исключением трещин механического или коррозионного происхождения развитие остальных повреждений трубопроводов прогнозируют по результатам внутритруб-ной или наружной дефектоскопии и контроля коррозии.  [c.139]


Предлагаемый читателю первый том справочника Металловедение и термическая обработка стали посвящен изложению методик изучения тонкого строения и структуры сталей и определению их разнообразных свойств (механических, физических, эксплуатационных). Такое построение многотомного справочника представляется правильным, если иметь в виду преимущественно экспериментальный характер науки о металлах. В этом томе, наряду с традиционными методами изучения структуры и свойств (макро- и микроанализ, рентгеновская дифракто-метрия, электронная микроскопия, определение механических свойств при растяжении, ударе, циклическом нагружении и т.п.), рассмотрены развитые в последние годы тонкие методы структурых исследований (спектроскопические, резонансные, микроспектральные и др.) и методы определения сопротивления разрушению в различных условиях нагружения (параметры вязкости разрушения, кавитационное разрушение, износостойкость, сопротивление газовой коррозии) в сочетании с подробным изложением методик фрактографического анализа. Все эти новые разделы отличают настоящее издание от предыдущих.  [c.8]

В руководстве даны 34 работы, экспериментально иллюстрирующие такие важные разделы курса, как газовая коррозия и жаростойкость металлов, механизм процессов электрохимической коррозии (электродные потенциалы, электрохимическая гетерогенность, поляризация и деполяризация, явление пассивности), наиболее интересные и важные случаи электрохимической коррозии (контактная коррозия, устойчивость в кислотах, подземная и атмосферная коррозия, межкристаллитная и точечная коррозия, коррозия сварных соединений, коррозионное растрескивание и усталость), различные методы защиты металлов от коррозии (защитные покрытия, электрохимическая защита, применение замедлителей). Во введении авторы сочли необходи.мым более детально остановиться на принятых современных методах обработки и оформления результатов экспериментальных исследований (ведение отчета, оценка точности измерений и основные приемы графического анализа опытных данных). При недостаточном бюджете времени или других затруднениях требование оценки точности измерений может быть опущено. Здесь также кратко указаны сведения о работе с некоторыми наиболее часто встречающимися приборами и аппаратами коррозионной лаборатории, а также сведения о мерах безопасности при проведении лабораторных работ. В приложении собрано минимальное количество справочных данных, необходимых при выполнении работ коррозионного практикума.  [c.7]

Оценку фактической нагруженности оборудования и ТП осуществляют рассчетными методами согласно действующей НТД, с учетом фактической геометрии и размеров конструкций, вида и величины выявленных дефектов и вызываемой ими концентрации напряжений, а также результатов экспериментальных исследований напряженно-деформированного состояния и изменения физико-механических свойств металла. Кроме трещин механического или коррозионного происхождения, развитие остальных повреждений ТП прогнозируют по результатам внутритрубной или наружной дефектоскопии и контроля коррозии.  [c.176]

Потеициостатическая техника используется для исследования поведения металлов в расплавленных солях. В принципе этот экспериментальный метод является таким же, как и метод для испытаний в водных средах. Результаты можно интерпретировать так же, как и для водных растворов типичное активно-пассивное поведение наблюдается так же хорошо, как анодные и катодные тафелевские зависимости. Авторы [94] установили, что потенциостатический метод, который успешно применяют для оценки сопротивления материалов коррозии в водных растворах, по-видимому, может быть пригодным и для отбора материалов, предназначенных для применения в расплавах солей. К тому же по отдельным поляризациоииым кривым этот метод позволяет построить диаграммы устойчивости для системы расплавленных солей, имеющих сходство с хорошо известными диаграммами Пурбе. Основным отличием в данном  [c.611]

Определенный шаг к раскрытию механизма коррозии гетерогенных сплавов был сделан исследованиями анодного окисления. Прежде всего следует отметить, что неоднозначность взаимного влияния компонентов оказалась присущей и анодным процессам. В одних случаях экспериментальные результаты свидетедьствовали о повышенной анодной активности компонентов сплава по сравнению с чистыми металлами [144, 153, 156- 158], в других наблюдалась прямо противоположная картина [158— 160]. Например, методом  [c.158]

При коррозионных исследованиях используется широкий набор экспериментальных методов. Полученные данные помогают установить механизмы коррозии, которые в свою очередь должны позволить отделить возможные меры защиты от невозможных и выбрч ь наиболее подходящий метод уменьшения коррозии до приемлемого уровня. На практике чрезвычайно трудно интерпретировать полученные резуль аты. Зачастую не хватает времени получить достаточную информацию с помощью лабораторных испытаний, результаты которых далеко не всегда совпадают с практическим опытом. Все эти и ряд других факторов заставляют использовать методические приемы определения поведения металла в конкретных условиях, в 1юторых он должен будет рафтать.  [c.204]

В тех случаях, когда при коррозии на поверхности металла образуется окисный (или солевой) слой в виде сплошного, изолирующего ее от раствора чехла, дальнейшее анодное окисление металла непременно будет включать стадию доставки участников реакции через этот слой. Поскольку перенос вещества через твердую фазу в обычных условиях процесс довольно медленный [1], можно предполагать, что стадия переноса через слой окисла, по крайней мере в некоторых случаях, окажется наиболее медленной стадией, определяющей скорость процесса окисления металла в целом. Экспериментальное выявление концентрационной поляризации в твердой фазе представляет, однако, известную трудность. Прямые методы обнаружения концентрационной поляризации, применяющиеся при исследовании реакций с переносом реагентов в растворе (по влиянию конвекции или по изменению концентрации реагентов), в данном случае непригодны. Из косвенных, релаксационн ых методов исследования высокочастотные методы имеют ограниченную применимость. Они не могут обнаружить концентрационную поляризацию тогда, когда для ее проявления требуется время, более длительное, чем длительность единичного импульса, которая у этих методов очень мала. При импедансном методе, например, она не превышает нескольких миллисекунд, так как нижний предел рабочих частот у этого метода не ниже 200 гц. Следовательно, в случаЖс, когда для проявления концентрационной поляризации необходимо, например, несколько секунд или минут, этот метод обнаружить ее не сможет. Такие случаи, оказалось, не так уже редки на практике, и применение к ним высокочастотных методов может привести к ошибочным выводам относительно природы скорость определяющей стадии процесса [2]. Вероятность возникновения такого случая увеличивается, как увидим ниже, при замедлении электрохимической стадии процесса, т. е. при его истинной пассивации . Поскольку именно пассивные металлы представляют для нас наибольший интерес, требовалось изыскать метод, который был бы в принципе свободен от указанного ограничения. В поисках его мы обратили внимание на метод потенциостатической хроноамперометрии, предложенный и апробированный на реакциях, протекающих с пе-  [c.80]


Разработаны новые методы исследования локальной коррозии, основанные на измерении напряженности электрического поля в электролите и анодном заряжении поверхности электрода. Метод исследования напряженности поля над точечным анодом позволяет с помощью сдвоенного зонда и двух неполяри-зующихся электродов сравнения измерять разность потенциалов между двумя точками в электролите в любом направлении, непрерывно наблюдать за ходом коррозионного процесса в питтинге. Этот метод позволяет определять ток, стекающий с питтинга, и в любой момент времени устанавливающиеся в нем плотности тока, а также распределение токов по поверхности электрода. Метод анодного заряжения, в котором электрод заряжается постоянной плотностью тока, позволяет по кривым заряжения определить, что происходит на поверхности электрода, т. е. подвергается металл питтинговой коррозии или нет, и тем самым судить о пассивномсостоянии сплава, его склонности к питтинговой коррозии, об агрессивности среды и т. д. Приводятся экспериментальные результаты, полученные описанными методами.  [c.220]

Расчет защитного потенциала по этой формуле может быть выполнен только после определения концентрации ионов железа в слое электролита, непосредственно прилегающем к поверхности катодно защищаемого металла. Однако методов определения концентрации потенциалопределяющих ионов еще нет, если не считать попыток Березиной и др. Дополнительные затруднения возникают при экспериментальной проверке рассчитанных теоретически защитных потенциалов из-за недостаточной точности определения скорости коррозии при значительном смещении потенциала в отрицательном направлении от стационарного. Гравиметрическая методика исследования зависимости степени защиты от по-  [c.62]

В данном пособии мы даем только четыре работы по газовой коррозии. Однако эти задачи подобраны так, что, выполнив их, учащийся сможет достаточно полно ознакомиться с областью и основными приемами исследования газовой коррозии экспериментальным установлением кинетики окисления металлов и определением основных законов окисления (работа № 1), установлением температурной зависимости скорости окисления (работа № 2), наиболее типичным методом нспытания жаростойкости металлов и ее повышения путем легирования (работа № 3), а также методом нанесения жаростойких (диффузионных) покрытий (работа № 4).  [c.38]


Смотреть страницы где упоминается термин Методы экспериментального исследования коррозии металла : [c.81]    [c.34]   
Смотреть главы в:

Коррозия и износ поверхностей нагрева котлов  -> Методы экспериментального исследования коррозии металла



ПОИСК



Коррозия металлов

Методы исследования

Методы исследования металлов

Методы экспериментальные исследования

Экспериментальное исследование

Экспериментальные методы



© 2025 Mash-xxl.info Реклама на сайте