Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет конструкций по несущей способности

РАСЧЕТ КОНСТРУКЦИЙ по НЕСУЩЕЙ СПОСОБНОСТИ  [c.583]

РАСЧЕТ КОНСТРУКЦИЙ ПО НЕСУЩЕЙ СПОСОБНОСТИ  [c.691]

Здесь будут рассмотрены некоторые примеры расчетов по несущей способности конструкций из пластичных материалов, которые имеют площадку текучести на диаграммах растяжения, сжатия и чистого сдвига.  [c.489]

Условие прочности (при расчете по первому предельному состоянию — по несущей способности) устанавливает, что максимально возможное усилие в элементе конструкции (подсчитанное от расчетных  [c.601]


Выбранная схема защиты футеровкой (табл. 31) должна быть проверена расчетом на прочность — по несущей способности (прочности и устойчивости)—для всех конструкций, а также по образованию трещин — для конструкций, в которых образование трещин не допускается или их раскрытие ограничивается. При наличии органического подслоя под футеровкой необходимо проверить соответствие температуры на границе броня — подслой температурному пределу его использования. В сложных комбинированных футеровках аппаратов, работающих в условиях большого перепада те шератур, расчетом необходимо проверить напряжения, возникающие между каждым слоем футеровки, а также на границе футеровка — броня, и в металле, в силу различия коэффициентов линейного расширения примененных материалов. Выбор окончательного варианта защиты производится по минимуму приведенных затрат.  [c.92]

Метод расчета предельной несущей способности конструкции является более совершенным, чем расчет по допускаемым напряжениям, и поэтому за последнее время начинает получать распространение при расчете деталей энергоустановок. Он с успехом используется при расчете трубопроводов, сосудов, работающих под давлением, цилиндров и других узлов. В то же время из-за недостаточной изученности ряда коэффициентов, определяющих характеристики предельного состояния, в настоящее время еще широко применяется метод расчета конструкции по допускаемым напряжениям.  [c.56]

При расчете по разрушающим, нагрузкам в основу кладут то значение нагрузки, при котором конструкция теряет несущую способность, разрушается Элементы тонкостенных конструкций, работающие на сжатие, обычно разрушаются в результате потери устойчивости, а элементы, работающие на растяжение, — вследствие достижения напряжениями предела прочности материала.  [c.359]

Указанный метод является не единственным. Например, на практике в некоторых случаях используется метод расчета конструкций по разрушающим нагрузкам. В этом методе путем расчета определяется предельная нагрузка, которую может выдержать конструкция, не разрушаясь и не изменяя существенно свою форму. Предельная (разрушающая) нагрузка сопоставляется с проектной нафузкой, и на этом основании делается вывод о несущей способности конструкции в эксплуатационных условиях.  [c.33]

Для конструкций из пластичных материалов при статическом нагружении возможно выполнение расчета на прочность по несущей способности (по  [c.172]


Для иллюстрации первого случая вернемся еще раз к стержневой системе, изображенной на рис. 23. Когда напряжение во всех трех стержнях достигнет предела текучести (см. рис. 43), узел А, к которому приложена внешняя сила, может перемещаться при неизменном ее значении. Это и значит, что грузоподъемность (несущая способность) конструкции исчерпана. Позднее мы познакомимся и с другими, более сложными примерами расчета конструкции по предельному состоянию, когда последнее достигается вследствие распространения пластического течения.  [c.147]

Расчет по предельным нагрузкам позволяет более полно использовать несущую способность конструкций, чем расчет по напряжениям, и потому он является более экономичным. Такой способ расчета называют также расчетом по несущей, способности, расчетом по предельному состоянию, расчетом по разрушающим нагрузкам. Предельную нагрузку, деленную на нормативный коэффициент запаса прочности [я], назовем предельно допускаемой нагрузкой и обозначим [Р] р  [c.692]

Условие прочности (при расчете по первому предельному состоянию — по несущей способности) устанавливает, что максимально возможное усилие в элементе конструкции (подсчитанное от расчетных нагрузок, т. е. учитывающее возможную перегрузку) должно быть меньше (или равно) минимальной несущей способности этого элемента, подсчитанной с учетом возможного изменения прочности материала и условий работы сооружения. Так, например, при расчете стального стержня, показанного на рис. 15.17, условие прочности имеет вид  [c.715]

На основе различия между медленным (стабильным) и быстрым (нестабильным) периодами развития трещины Дж. Р. Ирвин предложил методику испытаний и расчета для оценки несущей способности образца (элемента конструкции), содержащего трещину известной длины [1, 11, 16]. Эта методика получила распространение в США и отчасти в других странах при испытании металлов, пластмасс, клеевых соединений и даже стекол [1, 11, 16]. Предполагается, что поле напряжений вблизи трещины может быть охарактеризовано методами теории упругости и теории пластичности, на основе которых выведены формулы для растягиваемой пластины конечной ширины, имеющей или острый центральный надрез или симметричные острые боковые надрезы. При этом особой поправкой учитывается также локальная пластическая деформация вблизи трещины. Местные напряжения выражаются через коэффициент интенсивности напряжений К, который по Дж. Р. Ирвину достигает критической величины Кс в момент перехода от стабильного (докритического) к нестабильному (закритическому) разрушению. Величина Ке зависит от степени стеснения пластической деформации. На это указывает, в частности, уменьшение Кс с увеличением толщины листов.  [c.128]

В новом методе расчета изменчивость показателей прочности материалов от разных причин учитывается коэффициентом безопасности по материалу, обозначаемому буквой к и вводимому в виде делителя к нормативным значениям. Численные значения указанного коэффициента устанавливаются нормами проектирования конструкций в зависимости от свойств материалов и других факторов. В расчетах по несущей способности коэффициент к принимается не менее 1,1.  [c.232]

Метод расчета по расчетным предельным состояниям в настоящее время введен как обязательный при расчете всех строительных конструкций, в этом методе получили дальнейшее развитие прогрессивные идеи расчета по несущей способности (учет пластических свойств материала) и устранены недостатки последнего.  [c.49]

Расчет по предельному состоянию позволяет раздельно учитывать влияние нагрузки, качество материала, условия работы сварной конструкции. Сущность этого метода заключается в следующем. Конструкцию при расчете рассматривают не в рабочем состоянии, а в предельном, т. е. в таком состоянии, за пределами которого дальнейшая нормальная эксплуатация конструкции недопустима. Сварные конструкции рассчитывают по двум предельным состояниям по несущей способности и по развитию чрезмерных деформаций. При расчете по несущей способности расчетное напряжение от расчетных усилий не должно превышать расчетного сопротивления металла  [c.334]


Расчет металлических конструкций должен производиться по первому (по несущей способности) и втором,у (по деформациям) предельным состояниям.  [c.59]

Расчет по предельным состояниям является прогрессивным методом расчета, так как он базируется на статистическом изучении действительной нагруженности конструкции в реальных условиях эксплуатации. Применительно к дорожным машинам он изучен еще недостаточно. ВНИИстройдормашем этот метод разработан только для строительных башенных кранов. При расчете по этому методу обычно проверяются два предельных состояния по несущей способности (прочность, выносливость, устойчивость), по деформациям и перемещениям (прогибы и перемещения), а третье предельное состояние — по ширине раскрытия трещин (трещиностойкость) — применяется относительно редко.  [c.67]

В отличие от существующих методов расчета по допускаемым напряжениям в общем машиностроении и по разрушающим нагрузкам в авиации и ракетной технике, где вероятностная природа нагрузок и несущей способности скрыта либо в коэффициенте запаса прочности, либо в коэффициенте безопасности, в данной работе характеристики вероятностного описания нагрузок и несущей способности непосредственно входят в формулы для определения размеров поперечного сечения, обеспечивающих заданную надежность элемента конструкции. Такой подход более адекватно отражает реальную работу элемента конструкции.  [c.3]

РАСЧЕТ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ ЗАДАННОЙ НАДЕЖНОСТИ ПО ПРОЧНОСТИ ПРИ ЗАКОНАХ РАСПРЕДЕЛЕНИЯ НАГРУЗКИ И НЕСУЩЕЙ СПОСОБНОСТИ, ОТЛИЧНЫХ ОТ НОРМАЛЬНОГО  [c.16]

В предыдущем параграфе рассмотрен вопрос расчета бруса с учетом собственного веса, из которого выяснено (рис. 3.3.2, в), что напряжения по высоте бруса распределяются неравномерно. Если предположить, что для этого бруса в опасном сечении (в защемлении) напряжение равно допускаемому, то остальные нижележащие сечения будут недогруженными. Это будет недостатком конструкции, так как ее несущая способность используется не полностью.  [c.46]

Расчет по предельному состоянию. Предельное состояние конструкции будет характеризоваться исчерпанием несущей способности, которое наступит тогда, когда во всех стержнях напряжения достигнут предела текучести. Найдем предельную нагрузку для конструкции.  [c.549]

В другом методе расчета за критерий прочности принимают не напряжение Б одном из элементов, а несущую способность конструкции в целом. Этот метод имеет несколько названий расчет по разрушающим нагрузкам, по предельным нагрузкам, по предельной несущей способности.  [c.20]

Вместе с тем возможен и другой подход к расчету на прочность. Под коэффициентом запаса можно понимать отношение предельной нагрузки к рабочей, эксплуатационной нагрузке. Он показывает, во сколько раз должна увеличиться рабочая нагрузка, чтобы несущая способность конструкции была полностью исчерпана. Этот коэффициент запаса в отличие от коэффициента запаса по напряжениям называется коэффициентом запаса по разрушающим нагрузкам.  [c.143]

При определении несущей способности элементов конструкций, работающих на усталость, по изложенным зависимостям в расчет прочности вводят запасы прочности и требования на надежность против усталостных поломок, а также необходимую информацию об усталостных свойствах и действующих напряжениях.  [c.164]

За паследние годы в СССР большое развитие получил новый подход к оценке надежности конструкций путем расчета ). Он уже упоминался в предыдущем параграфе, где назывался методом расчета по предельным состояниям. Этот метод во многом близок к методу расчета по допускаемым нагрузкам, но отличается от последнего в части, относящейся к коэффициенту запаса. Метод расчета по предельным состояниям узаконен нормами и официально принят в СССР как основной метод расчета строительных конструкций, мостов и других сооружений. Понятие расчета по предельным состояниям включает в себя большее содержание, нежели расчет на прочность. В этом методе рассматриваются три предельных состояния по несущей способности, по жесткости и по тре-щинообразеванию. Коснемся лишь первого.  [c.209]

Так как сечение тонкостенных пространственных конструкций имеет небольшое армирование, то для ориентировочных расчетов в первом приближении можно принять х—0,55 ho. Полное исчерпание несущей способности внецентренно сжатых (растянутых) элементов может иметь место только в том случае, если они взаимодействуют с более прочными окаймляющими их конструкциями. Например, несущая способность полки оболочки может быть исчерпана только в том случае, если она опирается на достаточно прочный контур, который при воздействии на него предельных для сечений полки нормальных сил распора N p и изгибающих моментов Л1пр не разрушится. Если контур не обладает такой прочностью, то возникновению в плите сил iVnp и моментов УИпр будет предшествовать его разрушение. По-видимому, если отвлечься от несовпадения несущих способностей одной и той же конструкции при различных схемах излома, то в оптимально запроектированной с точки зрения прочности конструкции разрушение различных элементов должно наступать при одной и той же нагрузке, т. е. элементы должны быть равнопрочными. В соответствии со сказанным выше, если прочность криволинейного бруса ниже прочности балок, на которые он опирается, то при возникновении в брусе предельных нормальных сил Л/ р и моментов УИпр балки не разрушатся (рис. 3.2). Наоборот, если балки в рассматриваемом примере не обладают достаточной прочностью, то при возникновении в них предельных моментов и их разрушении несущая способность бруса не будет исчерпана и действующие в нем усилия будут меньше предельных. При равнопрочности элементов момент разрушения балок должен совпадать с моментом исчерпания несущей способности бруса. Оценка несущей способности конструкций с учетом взаимного влияния прочности отдельных элементов является, несомненно, приближенной. Более точных результатов можно ожидать при учете не только взаимного влияния прочностей отдельных элементов, но и при учете влияния их деформативности. Если балку подкреплять подвесками с одним и тем же сечением (одной и той же прочностью), но с разной длиной, то очевидно, что несущая способность конструкции при увеличении длины подвески до некоторой оптимальной величины может увеличиваться (рис. 3.2, д). Таким образом, при оценке несущей способности конструкции  [c.176]


Гибридизация композитов посредством армирования волокнами разных физико-механических типов (сортов) позволяет в ряде случаев добиваться оптимального соотношения между жесткостными и прочностными свойствами материала. Чаще всего, однако, использование в композите волокон различных сортов имеет своей целью снижение стоимости конструкционного материала за счет замешения части дорогостоящей арматуры более дешевыми ее видами. Кроме полиармированных композитов к гибридам следует отнести слоистые композиты, содержащие слои, изготовленные из различных материалов. Слоистые гибридные композиты применяются в конструкциях, к которым наряду с требованиями по несущей способности предъявляются дополнительные требования (например, по тепло- и звукоизоляции). Структурные особенности указанных видов гибридных композитов необходимо учитывать в процессе расчета их физико-механических характеристик (в частности, деформативных).  [c.5]

Таким образом, в методе расчета конструкций по предельным состояниям коэффициенты к, ка, пг, п введены вместо прежнего общего коэффициента запаса прочности. Значения их приведены в СНиПе для каждого вида конструкций. Раздельный учет влияния изменчивости нагрузок, механических характеристик материалов, общих условий работы конструкции и других факторов на несущую способность конструкций позволяет точнее определить величины этих коэф4 1циентов, чем единый общий коэффициент запаса прочности.  [c.234]

Развитие исследований по процессам деформации и разрушения в механическом и физическом аспектах способствует усовершенствованию расчета деталей конструкций на прочность и жесткость. Рассмотрение предельных состояний по критерию образования пластических деформаций, жесткости инициированию и развитию трещин позволило сблизить результаты расчетов с действительной несущей способностью конструктивных элементов и соответствующими опытными данными. Тем самым были углублены теоретические и экспериментальные основы инженерных расчетов на прочность и долговечность в связи с типом и режимом напряженного состояния. Дополнения физики твердого тела и физического металловедения способствовали объяснению макроскопическик закономерностей сопротивления деформациям и разрушению, влиянию на них времени тепловых и механических воздействий. При этом намечаются пути взаимодействия механики деформации и разрушения в констануальной трактовке с физическими представлениями о поведении кристаллов и кристаллических конгломератов.  [c.517]

Расчет стальных конструкций производится в скют-аетствии с П-А. 10—62 СНиП rio двум предельным состояниям по несущей способности (прочности, устойчивости или вынЬсливости) и по развитию чрезмерных деформаций.  [c.61]

Расчет бесфасоночных узлов. Несущая способность бесфасоночного узла трубчатой конструкции (рис. 5.6), включающего в себя один сквозной трубчатый элемент (пояс) и несколько примыкающих элементов (раскосы, стойки, столики), проверяется по формулам  [c.199]

Расчет подшипников по приведенным формулам и каталожным данным дает лишь средние н притом несколько приуменьшенные значения долговечности. -Согласно статистическим данным у 50% подшипников долговечность в 3 — 4 раза, а у 10% в 10 — 20 раз превышает расчетную, причем у подшипников повышенной точности она значительно больше, чем у подшипников нормальной точности. Долговечность и несущая способность подшипников очень сильно зависит от конструкции узла, правильности установки подшипников, жесткости вала и корпуса, величины натягов на посадочных поверхностях и, особенно, от условий смазки. Полшипипки в правильно сконструированных узлах при целесообразном предварительном натяге нередко работают в течение срока, во много раз превосходящего расчетный. С другой стороны, высокое значение коэффициента работоспособности не является гарантией надежности. Такие подшипники могут быстро выйти из строя вследствие ошибок установки (перетяжка подшипников, перекос осей, недостаточная или избыточная смазка).  [c.471]

На рис. 4.6,а,б приведено сопоставление эпюр напряжений полу ченных численно-графическим методом и подсчитанных с использованием соотношений (4.16) — (4.19). Как видно, имеется удовлетворительное соответствие распределений построенных по обеим мего-дикам расчета, что свидетельствчет о приемлемости подхода представления полей линий скольжения в мягких прослойках, работающих в составе толстостенных оболочек, отрезками циклоид. Кроме того, аппроксимация линий скольжения отрезками циклоид позволяет получить достаточно добные д,чя практического пользования аналитические выражения для оценки напряженного состояния и несущей способности толстостенных оболочковых конструкций. Процедура определения величины предельного перепада давлений (р q) ,ax по толщине стенки оболочковых констр кций, ослабленных продольными мягкими прослойками, сводится к определению средних предельных напряжений а р исходя из V словия их статической эквивааентноети напряжениям Gy  [c.220]

В восемнадцати предшествующих главах были изложены различные разделы механики деформируемого твердого тела, при этом практическая направленность каждого из них не очень акцентировалась. Но основная область приложения механики твердого тела — это оценка прочности реальных элементов конструкций в реальных условиях эксплуатации. С этой точки зре-нпя различные главы приближают нас к решению этого основного вопроса в разной степени. Классическая линейная теория упругости формулирует свою задачу следуюш им образом дано пекоторое тело, на это тело действуют заданные нагрузки, точки границы тела претерпевают заданные перемещения. Требуется определить поле вектора перемещений и тензора напряжений во всех точках тела. После того как эта задача решена, возникает естественный и основной вопрос — что это, хорошо или плохо Разрушится сооружение или не разрушится Теория упругости сама по себе ответа на этот вопрос не дает. Правда, зная величину напряжений, мы можем потребовать, чтобы в каждой точке тела выполнялось условие прочности, т. е. некоторая функция от компонент о.-,- не превосходила допускаемого значения. В частности, можно потребовать, чтобы нигде не достигалось условие пластичности, более того, чтобы по отношению к этому локальному условию сохранялся некоторый запас прочности, понятие о котором было сообщено в гл. 2 и 3. Мы знаем, что для пластичных материалов выполнение условия пластичности в одной точке еще не означает потери несущей способности, что было детально разъяснено на простом примере в 3.5. Поэтому расчет по допустимым напряжениям для пластичного материала безусловно гарантирует прочность изделия. Для хрупких материалов условие локального разрушения отлично от условия наступления текучести и локальное разрушение может послужить началом разрушения тела в целом. Поэтому расчет по допускаемым напряжениям для хрупких материалов более оправдан. Аналогичная ситуация возникает при переменных нагрузках и при действии высоких температур. В этих условиях даже пластические материалы разрушаются без заметной пластической деформации и микротрещина, возникшая в точке, где 42  [c.651]


Для курса сопротивления материалов, отражающего развитие механики деформируемого твердого тела и усовершенствование расчета на прочность современных конструкций, все более актуальным становится освещение вопросов механики разрушения как основы оценки несущей способности по сопротивлению хрупкому и усталостному разрушению. Эти критерии несущей способности в свете закономерностей распространения макроразру-щения входят в тесную связь между собой, существенно углубляя представления о кинетике образования предельных состояний и запаса прочности в процессе исчерпания ресурса при работе изделий.  [c.3]


Смотреть страницы где упоминается термин Расчет конструкций по несущей способности : [c.214]    [c.131]    [c.49]    [c.46]    [c.49]    [c.267]    [c.87]    [c.320]    [c.195]    [c.283]   
Смотреть главы в:

Сопротивление материалов  -> Расчет конструкций по несущей способности



ПОИСК



Несущая способность

РАСЧЕТ И ИССЛЕДОВАНИЕ ПРОЧНОСТИ ЖЕЛЕЗОБЕТОННЫХ ПРОСТРАНСТВЕННЫХ КОНСТРУКЦИЙ Особенности расчета несущей способности железобетонных пространственных конструкций

Расчет конструкций по несущей способности Общие сведения

Расчет элементов конструкций заданной надежности по прочности при законах распределения нагрузки и несущей способности, отличных от нормального

Расчет элементов конструкций заданной надежности при нормальном законе распределения нагрузки и несущей способности

Способность несущая конструкции

Ток несущий



© 2025 Mash-xxl.info Реклама на сайте