Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Понятие о методе напряжений и методе перемещений

ПОНЯТИЕ О МЕТОДЕ НАПРЯЖЕНИЙ И МЕТОДЕ ПЕРЕМЕЩЕНИЙ  [c.43]

Главное, что будет излагаться в этой книге, по существу, состоит из трех основных частей 1) основные понятия о перемещениях, внутренних напряжениях, деформациях и работе внутренних сил, а также о процессе нагружения малого элемента твердого тела 2) основные механические свойства твердых тел, такие, как упругость и идеальная пластичность, текучесть, ползучесть и релаксация, вязкость и динамическое сопротивление, усталость и разрушение 3) основные кинематические и геометрические гипотезы, упрощающие математическую постановку задач о напряжениях, деформациях, перемещениях и разрушениях твердых тел при различных внешних воздействиях, а также основные уравнения и методы решения задач о деформации и прочности тел. Методы сопротивления материалов отличаются от более строгих методов теории упругости и пластичности в основном введением ряда упрощающих предположений кинематического и геометрического характера и, тем не менее, в большинстве случаев оказываются достаточно точными.  [c.12]


Введем несколько новых понятий, таких, как комплексное перемещение, главный комплексный вектор сил, главный момент и т. д. Мы будем рассматривать только плоское деформированное состояние. Перенесение данных здесь понятий и методов решения на плоское напряженное состояние не составит никакого труда. В плоском деформированном состоянии закон Гука имеет вид  [c.357]

В постановках задач о плоском напряженном состоянии с использованием понятия дополнительной энергии в качестве неизвестных в узлах могут приниматься также напряжения и другие силовые параметры. Некоторые авторы (см., например, [9.181) выбирали схемы этого типа для численной проверки верхней границы решения. При этом величины напряжений в треугольных элементах принимаются постоянными, а уравнения для элемента записываются с помощью матрицы жесткости, так что вся конструкция может быть рассчитана методом перемещений. Применение этой аналитической схемы наталкивается на трудности, обусловленные кинематической неустойчивостью (см. разд. 3.3).  [c.289]

В механике в качестве основного объекта исследования внутренних напряжений и деформаций тела берется малый его объем такой, что практически он содержит очень много атомов и даже много зерен, но в математическом отношении он предполагается бесконечно малым. Допускается, что перемещения, напряжения и деформации являются непрерывными и дифференцируемыми функциями координат внутренних точек тела и времени. Предполагается, далее, что возникающие за счет внешних воздействий на тела внутренние напряжения в каждой точке зависят только от происходящей за счет внешних воздействий дефор мации в этой точке, от температуры и времени. Таким образом, наряду с понятием абсолютно твердого тела в механике возникает новое понятие материального континуума или непрерывной сплошной среды и, в частности, сплошного твердого деформируемого тела . Это понятие оказалось чрезвычайно плодотворным не только в теоретическом и расчетном отношении, поскольку позволило для исследования прочности привлечь мощный аппарат математического анализа, но и в экспериментальном, поскольку выявило, что для исследования прочности твердых тел имеют значение лишь механические свойства, т. е. связь между напряжениями, деформациями, временем и температурой, а не вся совокупность сложных взаимодействий, определяющих полностью физическое состояние реального твердого тела. Отсюда возникли специальные экспериментальные методы исследования механических свойств различных материалов. Возникла, и притом более ста лет тому назад, механика сплошных сред или континуумов и такие основные науки о прочности твердых тел, как сопротивление материалов, строительная механика, теория упругости и теория пластичности.  [c.12]


Деформация и различные другие проявления механических свойств твердых тел являются результатом воздействия некоторых внешних, по отношению к данному элементу тела, факторов. В простейшем случае такими внешними факторами являются механические воздействия. Механические воздействия могут быть заданы, например, системой сил, напряжениями, перемещениями (прогиб, закручивание и т. д.) или работой, последнее чаще при ударных воздействиях. Механические напряжения могут быть вызваны и немеханическими воздействиями тепловыми, магнитными и др. Для оценки подобны.х воздействий на механические свойства их обычно выражают в напряжениях, например стеснение температурного расширения. Для понимания закономерностей деформации, разрушения и механических свойств и особенно для управления (регулирования) процессами деформации и разрушения необ.ходимо привлечение некоторых основных понятий и методов механики.  [c.25]

Поскольку не представлялось возможным проследить за перемещением каждой конкретной частицы, оказалось уместным пойти по пути мысленного распределения вещества тела непрерывно по всему его объему, после чего можно было говорить о перемещениях точек тела как о непрерывных функциях координат. А так как не представлялось возможным вычислить и силы взаимодействия между каждой парой молекул, то оказалось целесообразным ввести статистическое понятие напряжения — осредненной силы взаимодействия между частицами, расположенными по одну сторону от произвольной площадки, мысленно выделенной внутри тела, и частицами, расположенными по другую сторону этой площадки. Погрешность, допускаемая при таком подходе, может быть существенной лишь при определении взаимных перемещений точек, первоначальные расстояния между которыми сравнимы с расстояниями между молекулами, или при определении силы, действующей на площадку, соизмеримую по величине с квадратом расстояния между молекулами. Но столь малые расстояния и площадки не представляют практического интереса при решении задач о деформации упругих тел, чем и оправдывается использование в теории упругости (а также и в теории пластичности) методов механики сплошных сред. Представление о твердом упругом теле как  [c.12]

В гибридных методах, основанных на концепции мультиполей в принципах минимума модифицированной потенциальной и дополнительной энергии, внутри элемента используется одно поле, а на границах элемента — другое независимое поле или два независимых поля. Можно, однако, использовать вариационный принцип, которому внутренне присуще понятие мультиполей. При этом подходе соответствующие поля перемещений и напряжений одновременно задаются для всего элемента.  [c.194]

В работах Э. И. Григолюка и Ю. В. Липовцева (1965, 1966) был развит статический метод исследования устойчивости вязко-упругих оболочек, основанный на изучении ветвления форм равновесия в процессе ползучести. Так как вследствие ползучести напряженное и деформированное состояние оболочки непрерывно меняется, то в некоторый момент времени исходная форма равновесия оказывается не единственно возможной и появляются смежные формы равновесия, отличные от исходной. Э. И. Григолюком и Ю. В. Липовцевым было показано, что учет ползучести не приводит к принципиальным изменениям тех представлений о понятии устойчивости и методов решения, которые сложились при исследовании устойчивости упругих систем. Меняется и уточняется лишь расчетная схема. Причем эти изменения существенны лишь в той ее части, которая связана с определением напряжений и деформаций исходного состояния системы. Здесь необходимо учитывать возможные отклонения системы от идеального состояния, обусловленные наличием начальных перемещений, особенностями приложения нагрузки и т. д. Уравнения же нейтрального равновесия, записанные относительно мгновенных приращений (вариаций) напряжений и перемещений, имеют тот же вид, что и для упругих систем. При их записи необходимо лишь учитывать те дополнительные деформации и напряжения исходного состояния, которые накапливаются в процессе ползучести.  [c.349]


Основы теории упругости были разработаны почти одновременно Навье (1821), Коши (1822), Пуассоном (1829). Независимо друг от друга они получили по существу все основные уравнения этой теории. Особо выделялись работы Коши. В отличие от Навье и Пуассона, привлекавших гипотезу молекулярных сил, Коши, опираясь на метод, в котором используется статика твердого тела, ввел понятия деформации и нагфяжения, установил дифференциальные уравнения равновесия, граничные условия, зависимости между деформациями и перемещениями, а также соотношения между напряжениями и деформациями для изотропного тела, первоначально содержавшие две упругие постоянные. В эти же годы появились исследования М. В. Остроградского о распространении волн в упругом теле при возмущении в его малой области. На эти исследования ссылается в своих работах Пуассон, впервые (1830) доказавший существование в однородной изотропной среде двух типов волн (волны расширения и искажения).  [c.5]

После этого в главе IX, посвященной теории упругости, осталось дать лишь разрешающие уравнения в двух вариантах — в перемещениях и напряжениях. В этой же главе приводится минимальный материал, имегадий общее значение типы граничных условий, типы задач, полуобратный метод Сен-Венана, интегрирование уравнений Коцш понятие о простейших задачах. Из отдельных задач теории  [c.12]

Следует отметить, что основные положения механики линейноупругого разрушения можно развивать и излагать независимо, используя либо понятие коэффициент интенсивности напряжений /С , как это было сделано ранее, либо понятия сила сопротивления увеличению размеров треш,ины или скорость освобождения энергии деформации G — энергии деформации, освобождаемой при малом приращении длины трещины. Выражение для нее дается последним слагаемым формулы (3.10). Хотя целям и задачам этой книги более соответствует подход, в котором используется понятие коэффициента интенсивности напряжений, в некоторых случаях целесообразнее использовать понятие скорости освобождения энергии деформации. Например, это имеет место в случаях, когда одновременно реализуются различные типы деформирования трещины, при обработке результатов испытаний с заданными перемещениями или при применении некоторых методов механики упругопластического разрушения. Понятие критического значения скорости освобождения энергии деформации G , при котором трещина становится неустойчивой и распространяется самопроизвольно, освещено в литературе (см., например, [18] или [191) его можно непосредственно связать с понятием критического коэффициента интенсивности напряжений Кс- Коэффициент интенсивности напряжений К и скорость освобождения энергии деформации G связаны между собой соотношением  [c.71]


Смотреть главы в:

Основы теории упругости и пластичности  -> Понятие о методе напряжений и методе перемещений



ПОИСК



Метод напряжений

Метод перемещений

Метод перемещений и метод сил

Напряжение Понятие

Перемещения и напряжения



© 2025 Mash-xxl.info Реклама на сайте