Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сильный изгиб пластинок

СИЛЬНЫЙ ИЗГИБ ПЛАСТИНОК  [c.75]

Сильный изгиб пластинок  [c.75]

Изложенная в 11—13 теория изгиба тонких пластинок применима лишь к достаточно слабым изгибам. Забегая вперед, укажем уже здесь, что условием применимости этой теории является малость прогиба по сравнению с толщиной h пластинки. Теперь мы перейдем к выводу уравнений равновесия сильно изогнутой пластинки. Прогиб С при этом уже не предполагается малым по сравнению с h. Подчеркиваем, однако, что самая деформация по-прежнему должна быть мала в том смысле, что тензор деформации должен быть мал. Практически это обычно означает требование С < /, т. е. прогиб должен быть мал по сравнению с размерами I пластинки.  [c.75]


Изгиб пластинки сопровождается, вообще говоря, ее общим растяжением ). В случае слабого изгиба этим растяжением можно пренебречь. При сильном же изгибе этого уже отнюдь нельзя сделать в сильно изогнутой пластинке не существует поэтому никакой нейтральной поверхности . Наличие растяжения, сопровождающего изгиб, является специфической особенностью пластинок, отличающей их от тонких стержней, которые могут быть подвергнуты сильному изгибу, не испытывая при этом общего растяжения. Это свойство пластинок является чисто геометрическим. Пусть, например, плоская круглая пластинка изгибается в поверхность шарового сегмента. Если произвести изгиб так, чтобы длина окружности осталась неизменной, то должен растянуться ее диаметр. Если же диаметр пластинки не растягивается, то должна сжаться ее окружность.  [c.75]

Самой сильной в смысле влияния на упрощение расчета является гипотеза о характере перемещений или деформаций, когда пренебрегают второстепенными особенностями в кинематической картине рассматриваемого явления. В каждой характерной задаче такая кинематическая гипотеза формулируется особо. Так, при изгибе балок имеется закон плоских сечений, при изгибе пластинок средней толщины и тонких оболочек — гипотеза прямых нормалей, т. е. предположение, что совокупность точек, лежавших до деформации пластинки на какой-либо прямой, нормальной к упругой срединной плоскости, остается на прямой, нормальной к упругой поверхности деформированной пластинки.  [c.132]

Мы видим, таким образом, что если радиус пластинки вдвое больше величины I, то распределение давления по основанию уже весьма сильно отличается от равномерного. Использование энергетического метода в задаче изгиба пластинки иа упругом основании излагается в 80.  [c.296]

При шлифовании пластины без заделки ее краев по контуру, что достигается установкой на магнитную плиту или приспособление с вакуумным зажимом, верхняя обрабатываемая поверхность будет нагреваться сильнее опорной нижней. Если предположить, что по толщине 8 пластинки температура изменяется по линейному закону с перепадом t, то соответствующие удлинения также будут изменяться по этому закону. В результате произойдет изгиб пластинки по шаровой поверхности.  [c.290]

Нагрузка моделей производится статически с помощью приспособлений, обеспечивающих растяжение по оси пластинки или чистый цилиндрический поперечный изгиб пластинки. При исследовании на растяжение передача нагрузки на модель только через ряд отверстий нецелесообразна, так как такую модель нельзя сильно нагрузить из-за малой прочности модели по отверстиям. В связи с этим для передачи нагрузки применяется специальный захват (фиг. П1. 40, а). Для обеспечения чистого цилиндрического изгиба модели также применяется специальное нагрузочное приспособление (фиг. П1.40, б). Величина изгибающего момента в модели определяется по грузу на рычаге.  [c.232]


Упомянем коротко об особом случае деформаций тонких пластинок— о так называемых мембранах. Мембраной называют тонкую пластинку, подвергнутую сильному растяжению приложенными к её краям внешними растягивающими силами. В таком случае можно пренебречь дополнительными продольными натяжениями, возникающими при изгибе пластинки, и соответственно этому можно считать, что компоненты тензора равны просто постоянным внешним растягивающим напряжениям. В уравнении (14,4) можно теперь пренебречь первым членом по сравнению со вторым, и мы получаем уравнение  [c.705]

Особого рассмотрения требует случай, когда оболочка подвержена воздействию сосредоточенных сил (т. е. сил, приложенных к изолированным точкам или линиям на поверхности оболочки), направленных в поперечном к оболочке направлении. Такими силами могут являться, в частности, силы реакции, действующие на оболочку со стороны опор в точках (или линиях) закрепления. Сосредоточенные силы производят в небольшой области вокруг точек их приложения изгиб пластинки пусть d есть порядок величины размеров этой области (так что её площадь — порядка d ). Поскольку изгиб С сильно меняется на протяжении расстояний d, то энергия изгиба (на единицу площади) —  [c.708]

Определить зависимость величины прогиба пластинки от действующей на нее силы при изгибе настолько сильном, что ft.  [c.79]

Жесткая упруго закрепленная пластинка находится в потоке газа (жидкости), скорость V которого направлена вдоль срединной плоскости в невозмущенном состоянии равновесия (рис. 111.23). В этом положении аэродинамические силы равны нулю (если пренебречь весьма малой силой трения потока о поверхность пластинки) и пластинка находится в равновесии под действием силы тяжести и реакции опор. При отклонениях пластинки возникают аэродинамические давления, зависящие от угла отклонения пластинки ф. Такая схема может служить сильно упрощенной моделью сечения крыла самолета ее вертикальные перемещения соответствуют изгибу крыла, а угловое перемещение — закручиванию. Соответствующие количественные закономерности устанавливаются в аэрогидродинамике мы приведем их в готовом виде.  [c.184]

На рис. 6.5 показан спектр собственных колебаний реальной консольной прямоугольной пластинки постоянной толщины, который экспериментально определен до частоты 17 500 Гц. Формы колебаний этой пластинки с указанием соответствующих собственных частот размещены в таблице эталонных форм. Здесь удобно проследить за некоторыми закономерностями, сопутствующими искажению эталонных форм. Искажение эталонных форм при трансформации эталонной пластинки в реальную вызывается, прежде всего, появлением связанности деформаций изгиба в продольном и поперечном направлениях. Сильные искажения возникают тогда, когда две исходные формы имеют близкие частоты п перестают быть, в силу появляющейся связанности деформаций по двум направлениям, ортогональны.ми при переходе от эталон-  [c.88]

Столь же сильно сказываются на работе заклепок, как поперечных связей, поперечные деформации склепанных листов. Будучи сжатыми усадочными усилиями, возникшими после остывания заклепок, склепанные листы могут воспринимать довольно значительные усилия в поперечном направлении, работая при этом почти как монолитное сплошное тело. После преодоления начального напряжения от усадочных усилий поперечные деформации далее происходят в результате удлинений заклепок и изгиба листов, как пластинок. При зтом напряжения в Заклепках становятся настолько большими, что превосходят обычно предел текучести. Диаграмма работы заклепки на отрыв показана на рис. 14. Что касается напряжений другого знака, т.е. сжатия листов, то тут, очевидно, роль поперечных связей вьшолняет непосредственное противодействие листов друг к другу, и склепанный стержень работает как одно целое. Учитывая сказанное, можно для начальной упругой стадии работы стержня принять козффициент поперечной жесткости заклепочного шва там, где оси заклепок расположены в плоскостях, параллельных рабочей плоскости стержня, равным бесконечности т.е. считать поперечные связи бесконечно  [c.14]

При определении безопасных размеров круглой пластинки, нагруженной в центре, мы можем обычно ограничить наши исследования вычислением максимального растягивающего напряжения при изгибе на нижней поверхности пластинки с помощью уравнений (96) и (97). Хотя в случае сильной концентрации нагрузки сжимающие напряжения в верхней части пластинки могут оказаться во много раз большими, чем растягивающие напряжения внизу, они, однако, не представляют непосредственной опасности в силу своего в высшей степени локализированного характера. Местная текучесть в случае пластичного материала не окажет никакого влияния на деформации пластинки в целом, если только растягивающие напряжения внизу пластинки останутся в безопасных пределах. Прочность хрупких материалов на сжатие бывает обычно во много раз больше, чем их прочность на растяжение поэтому в случае, если растягивающее напряжение внизу будет оставаться в безопасных пределах, то и пластинка из такого материала точно так же будет в безопасности.  [c.88]


Необходимо, впрочем, подчеркнуть, что эти картины линий тока позволяют судить только о движении слоев жидкости, близких к стенкам, и не дают никакого представления о движении основной массы жидкости. На рис. 115 показана фотография придонной картины линий тока в прямолинейном русле, перегороженном поперек плоской пластинкой. Широкая белая полоса, огибающая пластинку спереди, показывает, что придонный слой жидкости, встречая область повышенного давления перед пластинкой, отрывается от дна уже на значительном расстоянии перед пластинкой. В обоих вихрях позади пластинки ясно видно спиральное, направленное внутрь, движение такого же вида, как на рис. 114, что в данном случае и следовало ожидать. Примечательно, что в этой области, где турбулентность особенно сильна, система прочерченных линий получилась более четкой, чем в других местах. Каким образом возникает такое прочерчивание линий тока, до сих пор объяснить не удалось. На рис. 116 изображена фотография придонного течения в изогнутом канале прямоугольного поперечного сечения. На этой фотографии отклонение придонного слоя внутрь изгиба, а также отрыв от внутренней боковой стенки после поворота выделяются особенно четко.  [c.200]

Уравнения (14,6) и (14,7) представляют собой полную систему уравнений сильного изгиба тонких пластинок А. Foppl, 1907). Эти уравнения весьма сложны и не могут быть решены точно аже в простейших случаях. Обращаем внимание на то, что они нелинейны..  [c.79]

Изоду) [2]. Из данных, приведенных на рис. 3.1, следует, что для пласти ка на основе найлона 66 существует сбалансированность всех трех механи ческих характеристик при испытании во влажной среде. Максимальнь модуль упругости имеет материал на основе полифениленсульфида, не его ударная вязкость низка. Наибольшей ударной вязкостью обладает на полненный углеродными волокнами ударопрочный найлон, но у неге очень низкий модуль упругости. Так как механические свойства наполнен ных волокна.ми термопластов сильно различаются, необходимо классифицировать их также в соответствии с областями применения. Для иллюстрации на рис. 3. 2 приведены температурные зависимости модуля упругости и прочности при изгибе термопластов, армированных углеродными волокнами [3], а на рис. 3. 3 - триботехнические характеристики армированных термопластов [3]. Из этого рисунка следует, что термопласты, армированные углеродными волокнами, обладают лучшими триботехническими свойствами по сравнению с неармированными или содержащими стекловолокна термопластами. Характерно, что армированные пластики  [c.62]

Пластинки характеризуются тремя основными размерами длиной I, шириной Ь, толщиной 5. Длина I определяет длину режущей кромки и зависит от припуска на обработку и угла в плане ф. Рассчитанная с учетом припуска и угла в плане эффективная длина режущей кромки должна бать меньше длины режущей кромки стандартной пластины в 1,5—2 раза. Ширина Ь определяет число переточек резца по задней грани и площадь опоры пластинки. С точки зрения срока службы резца следует выбирать пластинки с возможно большим значением ширины, однако это может привести к увеличению габаритных размеров корпуса, повышению остаточных напряжений при пайке или клейке. Толщина 5 оказывает сильное влияние на прочность пластинки, а также на число переточек по передней грани. При наиболее распространенном расположении вдоль передней грани или под небольшим углом к ней прочность пластинки в наибольшей степени определяется толщиной и в меньшей степени шириной и длиной. Это связано с влиянием толщины на момент сопротивления пластинки при изгибе, который пропорционален толщине, возведенной в куб. Поэтому увеличение толщины способствует снижению растягивающих напряжений при изгибе, а значит и увеличению изгибной прочности. Однако увеличение изгибной прочности происходит до какого-то предельного значения толщины, за пределами которого прочность пластинки будет определяться не изгибными, а сжимающими нормальными напряжениями и касательными напряжениями сдвига. Увеличение в этом случае толщины не будет сопровождаться заметным повышением прочности, а расход инструментального материала будет возрастать. Увеличение числа переточек пластинки по передней грани при увеличении толщины тоже наблюдается до некоторого предела, определяемого равенством числа переточек по передней и по задней граням. Увеличение толщины сверх этого предела будет способствовать лишь увеличению отходов твердого сплава. Толщина пластинок выбирается в зависимости от высоты корпуса Н резца и равна (0,18 0,25) Я.  [c.120]

Описанный метол измерения п(к), предложенный Пуччианти в 1901 г., нагляден, но мало пригоден для количественного исследования дисперсии, так как изменение положения точек на круто изменяющей свое направление кривой сопряжено с большими погрешностями. Рождественский разработал новый метод исследования дисперсии вблизи линии поглощения (метод крюков ), позволяющий проводить измерения с большой точностью. В одно из плеч интерферометра вводится тонкая плоскопараллельная стеклянная пластинка определенной толщины Это ведет к большой добавочной разности хода (п —1)Г. где п — показатель преломления пластинки. Пока в кювете, расположенной в другом плече, исследуемого вещества нет, будут наблюдаться наклонные интерференционные полосы высоких порядков тЗ>1 (рис. 5.26, в). При одновременном действии исследуемого вещества (паров металла) и стеклянной пластинки вызываемые ими противоположные смещения полос суммируются для каждого значения к. Вдали от линии поглощения показатель преломления п разреженных паров близок к единице, поэтому наклон полос обусловлен только стеклянной пластинкой. Вблизи линии поглощения показатель преломления паров изменяется очень сильно и найдется такая длина волны, для которой действия паров и пластинки будут точно скомпенсированы, так что наклон интерференционной кривой пройдет через нуль. В результате полосы вблизи линии поглощения своеобразно изгибаются, образуя крюки, положения вершин которых на шкале длин волн можно точно измерить (рис. 5.26, г).  [c.251]


Работа разрушения составных образцов сильно зависит от способа крепления образцов между собой. Образцы с жестким креплением пластин, достигаемым обваркой по всему периметру, не дают повышения работы удара по сравнению со сплошным образцом. Образцы с нескрепленными пластинками повышают работу удара только на 5—10%. Придание ударным образцам формы бруса равного сопротивления изгибу значи в ьно И ЫШаеГшаботу разруше-  [c.17]

С.-Х. машиностроения). Герм, комитет наметил для П. с 77о—1 72 действующими витками оставлять по обоим концам 1 /4 пдожатых (мертвых) витков, а для 21/2—4 2 действующих витков—мертвого витка. На фиг. 33 изображены способы отделки концевых витков. Прицепы (ушки) П. растяжения устраиваются тремя основными способами (фиг. 34) 1) отгибом крайних витков, 2) ввинчиванием пробок, 3) навинчиванием на крайние витки металлич. пластинок. Простейший способ образования прицепов изгибом крайних витков страдает тем недостатком, что проволока в месте изгиба сильно деформируется—во врб-мя работы пружины здесь концентрируются наибольшие напряжения, и разрушение чаще всего наблюдается в отогнутых витках. По опытным америк. данным результирующее напряжение кручения и изгиба в основании отгиба больше чем вдвое превосходит общее напряжение в теле П. Равномерное  [c.227]

По Тамману во время В. наступает сдвиг кристаллов и нек-рое нарушение связи между ними, вследствие чего между кристаллами образуются пустоты, чем обък сняотся измеиение плотности. По Аткинсу отот процесс можно представить, предположив, что проволока состоит из бесчисленного К оличества бесконечно топких пластинок. Под влияние м давления стенок очка эти пластинки изгибаются, причем центры их смещаются по па-п()авлению В., как показано на фиг. 1. Подтверждением этого предположения служит явление воронкообразного излома в сильно протянутой проволоке. Вид такого излома изобра-  [c.219]


Смотреть страницы где упоминается термин Сильный изгиб пластинок : [c.701]    [c.703]    [c.168]    [c.468]    [c.705]    [c.201]    [c.56]    [c.357]   
Смотреть главы в:

Теоретическая физика. Т.7. Теория упругости  -> Сильный изгиб пластинок

Механика сплошных сред Изд.2  -> Сильный изгиб пластинок



ПОИСК



Изгиб пластинки

Пластинки продольные деформации сильный изгиб



© 2025 Mash-xxl.info Реклама на сайте