Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Угловая скорость и угловое ускорение тела при плоском движении

Способом Виллиса определяются абсолютные угловые скорости всех зубчатых колес. Далее, используя формулы и методы определения скоростей и ускорений точек тела в плоско-параллельном движении, можно найти скорости и ускорения любой точки звеньев механизма. Можно поступить иначе. Сначала определить относительную и переносную угловые скорости и, далее, пользуясь теоремой сложения скоростей и теоремой Кориолиса, найти скорости и ускорения любой точки колеса.  [c.457]


УГЛОВАЯ СКОРОСТЬ и УГЛОВОЕ УСКОРЕНИЕ ТЕЛА ПРИ ПЛОСКОМ ДВИЖЕНИИ  [c.137]

Для характеристики вращательной части плоского движения твердого тела вокруг подвижной оси, проходящей через выбранный полюс, аналогично случаю вращения твердого тела вокруг неподвижной оси можно ввести понятия угловой скорости ш и углового ускорения г.  [c.137]

Угловую скорость и угловое ускорение при плоском движении твердого тела можно представить в виде векторов, расположенных вдоль подвижной оси, перпендикулярной плоскости движения и проходящей через выбранный полюс (рис. 27). Вектор угловой скорости ш направ-  [c.48]

Все частицы тела совершают плоское движение, причем скорости и ускорения различных частиц, вообще говоря, различны чем дальше частица от оси, тем больше ее скорость. А угловая скорость вращения одинакова для всех частей тела она полностью определяет движение всего твердого тела при его вращении около неподвижной оси.  [c.180]

Сложное плоское движение тела в каждый момент времени приводится к вращению его вокруг мгновенного центра вращения М с мгновенной угловой скоростью (О и мгновенным угловым ускорением е (фиг. 7, а). Векторы линейных скоростей и ускорений всех точек звена удобно определять графически построением плана скоростей и плана ускорений.  [c.25]

В 1927 г. А. П. Котельников в работе [1] ввел понятие вектора редуцированного ускорения Й г/о) , где Wi — вектор ускорения -й точки твердого тела в плоском движении, а со — угловая скорость этого тела. Там же им доказаны две следующие теоремы.  [c.13]

Действительно, если известны ускорение одной из точек твердого тела, совершающего плоское движение, его угловая скорость и линия действия ускорения какой-либо второй его точки, то теоремы А. П. Котельникова позволяют найти два редуцированных ускорения и построить на них как на диаметрах две окружности, одна из точек пересечения которых определит положение м.ц.у. Однако вопрос, какая из э их двух точек будет м. ц. у., остался невыясненным.  [c.13]

Для определения скоростей и ускорений точек звеньев и угловых скоростей и ускорений звеньев плоских механизмов широко применяются методы планов скоростей и планов ускорений. Они основаны на известных теоремах теоретической механики, согласно которым плоское движение твердого тела (звена) можно представить как сложное, состоящее из двух движений переносного и относительного.  [c.43]


Основными кинематическими характеристиками движения являются скорость Ид и ускорение а полюса, определяющие скорость и ускорение поступательной части движения, а также угловая скорость со и угловое ускорение е вращения вокруг полюса. Значения этих величин в любой момент времени можно найти по уравнениям (79). Заметим, что если за полюс принять другую точку тела, например точку В (см. рис. 180), то значения Vg и а окажутся отличными от Va и Од (предполагается, что тело движется не поступательно). Но если связанные с телом оси, проведенные из точки В (на рис. 180 не показаны), направить так же, как и в точке А, что можно сделать, то значения углов ср, i 3, 0, а следовательно, и последние из уравнений (79) не изменятся. Поэтому и здесь, как ив случае плоского дв1шения, вращательная часть движения тела, в частности значения ш и е, от выбора полюса не зависят.  [c.154]

Наиболее существенные отличительные особенности рецензируемого пособия 1) полнее, чем в имеющейся учебной литературе, освещены мировоззренческие вопросы в теоретической механике 2) введен ряд новых разделов в соответствии с тенденциями развития научно-техни-ческого прогресса, например, однородные координаты, применяемые при описании роботов-манипуляторов. что потребовало существенно перестроить раздел кинематики твердого тела основные теоремы динамики изложены не только в неподвижных, но и в подвижных (неинерциальных) системах координат в разделе Синтез движения рассмотрены вопросы сложения не только скоростей, но и ускорений. При этом получен ряд новых результатов сравнение механических измерителей углов поворота и угловых скоростей твердых тел основы виброзащиты и виброизоляции, динамические поглотители колебаний основы теории нелинейных колебаний, включающей изложение основ методов фазовой плоскости, метода малого параметра, асимптотических методов, метода ускорения 3) в методических находках, позволивших углубить содержание курса и уменьшить его объем впервые обращено внимание на то, что условия динамической уравновешенности ротора и условия отсутствия динамических реакций в опорах твердого тела при ударе — это условия осуществления свободного плоского движения твердого тела полнее и глубже развиты аналогии между статикой, кинематикой и динамикой полнее изложены электромеханические аналогии и показана эффективность применения уравнений Лагранжа-Максвелла, для составления уравнений контурных токов сложных электрических цепей получение теоремы об изменении кинетической энергии для твердого тела из соотношения между основными динамическими величинами и многие другие.  [c.121]

При плоском движении тела угловую скорость и угловое ускорение можно считать векторами, направленными по подвижной оси, перпендикулярной к плоскости фигуры и проходящей через выбранный полюс. Вектор угловой скорости м пра плоском Авщжетии фигуры направлен по подвижной оси так, чтобы с конца его стрелки видеть вращение фигуры против движения часовой стрелки. Вектор углового ускорения ё при ускоренном вращении фигуры совпадает с направлением вектора угловой скорости а, а при замедленном вращении эти векторы имеют противоположные направления. Так как а и е не зависят от выбора полюса на плоской фигуре, то, следовательно, их можно приложить в любой точке фигуры, не изменяя величин и направлений этих векторов, т. е. а и ё являются свободными векторами.  [c.138]

От величины этих инвариантов зависит окончательный вид простейшего движения, к которому можно привести все данные движения. В частности, если Q-wq отличен от нуля то вся система движений при-тедется к кинематическому винту. В то же время наличие инварианта О является строгим доказательством того, что в теории плоского движения тела и произвольного движения тела в пространстве угловая скорость не зависит от выбора полюса, через который проходит ось мгновенного вращения, а следовательно, от него не зависит и угловое ускорение тела.  [c.207]


Формулы Ривальса для определения ускорений точек твердого тела значительно упрощаются при рассмотрении плоского движения твердого тела. В плоском движении вектор мгновенной угловой скорости вращения твердого тела  [c.50]

В. Точка В не удовлетворяет случаям А и Б. В этом случае либо она не является шарниром, либо к ней шарнирно присоединено тело, совершаюпдее плоское (пе врапдательпое и пе поступательное) движение. Для решения задачи должны быть известны угловая скорость и угловое ускорение звена, на котором находится точка В. Они могут быть найдены при вычислении скорости и ускорения других точек этого звена. При этих условиях уравнение (1) является векторным  [c.172]

Действительно, такое решение является прежде всего плоским (см. 329). Следовательно, плоскость движения П может быть выбрана в качестве координатной плоскости ( , ) барицентрической инерциальной системы координат Выберем на этой плоскости систему координат х, у), имеющую общее начало с системой (g 1 1), но вращающуюся по отношению к g fi) с постоянной угловой скоростью <р = таким образом, что ось х совпадает при любом t с прямой A(i). Тогда координата ух = yi t) любого тпг равна нулю при любом t. Следовательно, проекция абсолютного ускорения TTii на ось у вращающейся системы координат, определяемая второй строчкой матрицы (14г) 73 (где надо положить X = Xi, у = yi), равна 2x xi -Ь (p"xi. Вместе с тем все п тел находятся на оси х, так что проекции сил притяжения на ось у, т. е. проекции векторов Ui на эту ось, равны тождественно нулю. Следовательно,  [c.303]


Смотреть страницы где упоминается термин Угловая скорость и угловое ускорение тела при плоском движении : [c.152]    [c.152]    [c.7]    [c.45]   
Смотреть главы в:

Курс теоретической механики 1974  -> Угловая скорость и угловое ускорение тела при плоском движении

Курс теоретической механики 1983  -> Угловая скорость и угловое ускорение тела при плоском движении



ПОИСК



Движение плоское

Движение ускоренное

Плоское движение тела

Скорость движения

Скорость и ускорение

Скорость при плоском движении

Скорость тела угловая

Скорость угловая

Угловая скорость и угловое ускорение

Угловая скорость тела и угловое ускорение

Ускорение в плоском движении

Ускорение тела угловое

Ускорение угловое



© 2025 Mash-xxl.info Реклама на сайте