Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ниобий Определение в стали

Определение ниобия [21]. Ниобий и обычно сопутствующий ему тантал находятся в стали в форме карбидов, а также частично в виде твёрдого раствора в феррите.  [c.106]

Элементы второй группы повышают устойчивость феррита. Ко второй группе относятся хром, кремний, молибден, ванадий, вольфрам, титан, ниобий и алюминий. При содержании элементов второй группы выше определенного количества сталь в интервале температур от комнатной до перехода в жидкое состояние имеет структуру легированного феррита. Такая сталь называется ферритной.  [c.49]


Когда нет необходимого оборудования или когда процесс вакуумного раскисления не подходит по каким-либо причинам, добавляют элементы, которые сами реагируют с кислородом, такие, как кремний, алюминий, титан, ниобий, ванадий или цирконий (марганец также действует как раскислитель). Эти металлы, особенно когда они присутствуют в избытке, оказывают значительное влияние на окончательные свойства стали. Наиболее часто используется в качестве раскислителя кремний, который присутствует в виде твердого раствора в феррите и оказывает заметное влияние на ударную вязкость при низкой температуре. Алюминий влияет на свойства стали по-разному. Он очищает зерна стали от кислорода и реагирует с азотом, увеличивая тем самым ударную вязкость углеродистых сталей, но, будучи добавлен в заметном количестве, способствует графитизации и ослаблению границ зерен, действуя тем самым на прочность и свариваемость. Окись алюминия, которая является продуктом реакции с кислородом, может оставаться в стали во, взвешенном состоянии, образуя неметаллические включения. Другими возможными раскислителями могут быть титан, цирконий, ниобий и ванадий, которые в одних случаях могут оказаться полезными, а в других— вредными, поэтому использование этих элементов ограничивается созданием определенных сортов сталей, где их влияние проявляется с положительной стороны.  [c.51]

Титан, ниобий, вольфрам и ванадий - карбидообразователи. Поэтому в стали могут образовываться не только карбиды хрома, но и карбиды этих элементов (Ti , Nb , V ). При определенных содержаниях [Ti > (С - 0,02) 5 и Nb > ЮС] весь свободный, выше предела его растворимости (0,02 %), углерод может выделиться не в виде карбидов хрома, а в виде карбидов титана или ниобия. Выпадение карбидов повышает прочностные и понижает пластические свойства сталей.  [c.352]

Наиболее существенное влияние на полиморфизм железа оказывают хром, вольфрам, ванадий, молибден, ниобий, марганец, никель, медь и другие металлы. Они расширяют или сужают область существования у-железа. Например, введение в сталь никеля, марганца и меди понижает температуру точки и повышает температуру точки А , что (при определенном их содержании) расширяет область у-железа от температуры плавления до комнатной (рис. 5.2, а). Такие сплавы представляют собой твердый раствор легирующего элемента в у-же-лезе и относятся к сталям аустенитного класса.  [c.79]

Кроме хрома, в стали вводят никель, марганец, углерод, молибден, вольфрам, ниобий и другие элементы для придания им специальных свойств (повышенной коррозионной стойкости в агрессивных средах, более высоких механических свойств при высоких температурах, определенных физических свойств) и структуры.  [c.10]


Не отрицая указанного механизма влияния ниобия на устойчивость аустенита, можно предполагать, что существует и другой. Вероятно, при определенных условиях (состав стали и особенно наличие в стали хрома и кремния) термодинамическая активность ниобия оказывается такой, что вызывает перераспределение хрома между карбидами и твердым раствором (ниобий способствует переходу хрома из карбидной фазы в твердый раствор). Не последнюю роль, по нашему мнению, в этом механизме играет кремний. Однако эти предположения нуждаются в экспериментальной проверке.  [c.56]

Следующий этап исследования СО высшей точности состоит в проверке согласованности образцов, аттестованных на содержание одного и того же компонента, но относящихся к разным сериям (например, серия СО высшей точности 5С распространяется на определение массового содержания кремния в сталях, не легированных вольфрамом и ниобием, а серия 6С — в сталях, содержащих эти элементы). Процедура оценки согласованности образцов разных серий может оставаться той же, что и при контроле согласованности внутри одной серии.  [c.91]

Примером СО состава сталей с аттестацией массового содержания одного элемента могут служить 29 японских образцов, приведенных в работе [58]. В 1983 г. в Японии закончена разработка еще одной серии из четырех СО, предназначенной для химического определения бора в сталях, не содержащих ниобий (0,0009 — 0,0045 % В) [66].  [c.100]

Марка легированной стали состоит из сочетания определенных букв и цифр, характеризующих ее химический состав. Входящие в маркировку буквы обозначают следующее Г — марганец, С — кремний, X — хром, Н —никель, М—молибден, Ю — алюминий. В —вольфрам, Т —титан, Ф —ванадий. Б —ниобий, К —кобальт, Д — медь, Р — бор, А — азот. Цифры, входящие в марку, указывают на содержание конкретного элемента в стали. Двузначное число, стоящее в начале марки стали, указывает на среднее содержание углерода в сотых долях процента. Цифра, стоящая справа от букв, обозначающих элементы, показывает примерное содержание этого элемента в процентах.  [c.11]

Номограмму можно использовать, например, для определения температуры стабилизирующего отжига. Как следует из номограммы, в стали 18-9-Nb, содержащей 0,04% С, после закалки с 1050° С весь углерод находится в твердом растворе и, следовательно, ниобий не является стабилизатором. Если эту сталь подвергнуть стабилизирующему отжигу при 870° С, содержание углерода в аустените понизится до 0,013% и сталь окажется невосприимчивой к МКК в этом состоянии или после дополнительного нагрева при более низких температурах.  [c.40]

Условная годовая экономия от внедрения новых методов анализа различных электродных обмазок, а также определения элементов ниобия и циркония в сталях 5,3 тыс.руб.  [c.26]

Чтобы уменьшить склонность хромоникелевых сталей типа 18-8 к межкристаллитной коррозии, к ним добавляют титан или ниобий в определенных соотношениях с углеродом. Титан вводят в сталь 18-8 в количестве, превышающем содержание углерода в 4—5,5 раза, а ниобий — в 8— 10 раз [54, 58].  [c.1388]

Каждая легированная сталь имеет свое обозначение, состоящее из букв и цифр. Буквы обозначают определенные химические элементы, содержащиеся в стали, а именно Г — марганец, С — кремний, X — хром, Н — никель, Д — медь, М — молибден. Ф — ванадий, Т — титан, Б — ниобий, Ю — алюминий, В — вольфрам, К — кобальт. Марки высококачественной стали имеют в конце обозначения букву А.  [c.10]

Склонность сталей к межкристаллитной коррозии зависит от химического состава, режимов термической обработки, длительности нагрева в определенном температурном интервале. Появление склонности стали к межкристаллитной коррозии связано с условиями выделения карбидов [89], [90], [91], [92]. Влияние малых содержаний углерода и азота в хромоникелевых сталях типа 18-8 и в стали 18-8 с молибденом соотношений титана и ниобия к углероду при различных режимах тер.мической обработки на склонность к межкристаллитной коррозии рассмотрено в работе [70], [75].  [c.654]

Рис. 19. Номограмма для определения структурных составляющих в хромоникелевых сталях в зависимости от содержания никеля, углерода, марганца, а также хрома, кремния и ниобия (эквивалент никеля N 4-ЗОС-Ь 0,5 Мп эквивалент хрома Сг + 1,5 31-Ь + 0,5 N5) Рис. 19. Номограмма для определения <a href="/info/335019">структурных составляющих</a> в <a href="/info/36275">хромоникелевых сталях</a> в зависимости от содержания никеля, углерода, марганца, а также хрома, кремния и ниобия (эквивалент никеля N 4-ЗОС-Ь 0,5 Мп эквивалент хрома Сг + 1,5 31-Ь + 0,5 N5)

На определенном расстоянии по обе стороны сварного шва находятся области, нагревающиеся до критических температур. Здесь по границам зерен пересыщенного аустенита выделяются карбиды, богатые хромом. В результате того что устойчивость по границам зерен уменьшается, в агрессивных средах идет межкристаллитная коррозия. Образование карбидов зависит не только от температуры, но и от продолжительности ее воздействия. Влияние этих факторов определяется химическим составом основного материала и его структурой. Для сварки непригодны стали, при нагревании которых в области критических температур по границам зерен образуется карбид хрома. Поэтому для изготовления сварных конструкций широко применяются стали, стабилизованные титаном, ниобием или танталом, а также стали с низким содержанием углерода, при сварке которых не выделяются карбиды. В большинстве случаев их использования межкристаллитная коррозия в зонах, расположенных на определенном расстоянии от сварного шва, не наблюдается.  [c.100]

В работе [1] приведены результаты исследований ряда аусте-нитных хромоникелевых сталей, легированных титаном, ниобием, алюминием, кремнием и молибденом в количестве 1,2—1,5 %. Химический состав сталей и средние значения скорости переноса масс представлены в табл. 17.1 и 17.2. Испытания по определению переноса масс проводили в течение 1000 ч в потоке жидкого натрия при 900 °С на входе в испытательный участок, 860 °С на выходе и массовом содержании кислорода (1—3)-10 %.  [c.262]

Это привело к необходимости детального исследования процессов теплоотвода в каналах простой геометрии при параметрах, характерных для реактора ВВЭР. Опыты проводились как в трубах из нержавеющей стали, так и в трубах из сплава циркония с ниобием. Было подтверждено, что скорость смачивания труб из сплава циркония в два раза больше, чем труб из нержавеющей стали тех же размеров (при одинаковых параметрах). Однако с учетом определенной консервативности расчетов по обеспечению безопасности АЭС, а также в связи с тем, что данные, получаемые на поверхностях из нержавеющей стали, отличаются большей стабильностью, основные характеристики теплоотдачи приводятся для труб из нержавеющей стали. Чтобы добиться большего приближения трубчатого канала к ячейке реальной сборки, при тех же теплогидравлических параметрах были испытаны трубы со вставками, выполненными из пластин реальных дистанционирующих элементов и установленными через 250 мм [21].  [c.114]

Для выяснения механизма разрушения тонких листов некоторых металлов была проведена серия экспериментов [125] по определению времени предварительного нагревания металла до начала разрушения, времени образования сквозного отверстия (при неподвижном источнике) в слое металла, изменения отражательной способности в процессе воздействия лазерным излучением и температуры в зоне облучения и на некотором расстоянии от нее. Измерения проводились в широком диапазоне плотностей потоков для фольги и тонких листов титана, тантала, ниобия, нихрома, ковара и электротехнической стали. Облучение осуществлялось либо на воздухе, либо при поддуве кислорода или гелия.  [c.117]

Применение таких труб открывает новые возможности по предотвращению протяженных вязких разрывов. Известно, что в магистральных газопроводах с монолитной стенкой труб при определенных соотношениях между динамической вязкостью материала и интенсивностью потока анергии, поступающей к вершине движущейся трещины, могут иметь место протяженные вязкие разрывы. В трубах из вязких сталей, полученных методом контролируемого проката и содержащих дефицитные добавки (молибден, ниобий и титан), такие разрушения наблюдались как в зарубежной практике, так и в нашей стране.  [c.30]

В России принята буквенно-цифровая система маркировки легированных сталей. Каждая марка стали содержит определенное сочетание букв и цифр. Легирующие элементы обозначаются буквами русского алфавита X — хром, Н — никель, В — вольфрам, М — молибден, Ф — ванадий, Т — титан, Ю — алюминий, Д — медь, Г — марганец, С — кремний, К — кобальт, Ц — цирконий, Р — бор, Б — ниобий. Буква А в середине марки стали показывает содержание азота, а в конце марки — то, что сталь высококачественная.  [c.281]

На рис. 18 представлены анодные и катодные потенцио-динамические кривые, снятые в кипящей 56%-ной HNO3 на стали 1Х18Н9Б, карбиде титана и карбиде ниобия. Кроме того, точками (4 и 5) отмечены скорости коррозии карбида титана и карбида ниобия, определенные в первом случае по потерям веса, а во втором — по анализу раствора. Видно, что первая величина примерно в 50 000 раз превосходит вторую. Это хорошо согласуется с практикой фазового анализа, в котором Nb и Ti разделяют кипячением в концентрированной HNO3, при этом Ti полностью растворяется [30].  [c.64]

Влияние температуры закалки иа содержание ниобия в выде-ленрюм осадке показано на рис. 19. При 900° С практически выделяется весь ниобий, содержащийся в стали. При повышении температуры закалки увеличивается доля растворенного в твердом растворе ниобия с —0,14% при 1050° С до —0,31% при 1200° С. Результаты аналитического определения содержания азота в осадках и полученные на основании этого, как разность, данные о количестве азота в твердом растворе приведены в табл. 1.  [c.31]

Значительное содержание молибдена в стали при определенных условиях термической обработки способствует образованию, помимо феррита и о-фазы, ряда интерметаллидов, снижающих коррозионную стойкость материала. Легирование хромоникель-молибденовых коррозионно-стойких сталей титаном или ниобием несколько повышает их стойкость против МКК в неокислительных средах, но малоэффективно в сильноокислительных. Следовательно, можно считать, что в большинстве случаев присутствие молибдена отрицательно влияет на стойкость основных типов хромоникелевых коррозионно-стойких сталей и сплавов в сильно-окислительных средах. Исключением являются медьсодержащие стали и сплавы с высоким содержанием никеля.  [c.56]


Стали ЛА1, ЛАЗ, ЛА4 и ЛА5 имеют нестандартную маркировку. Буква Л указывает, что данная сталь предназначена для литья буква А — что она аустенитная цифра, стоящая после букв, определяет химический состав. Все три стали содержат по 15% хрома и никеля, около 2% молибдена, порядка 3% кобальта, 1% ванадия и менее 1% титана. Сталь ЛА5 содержит, кроме того, до 1,2% ниобия, а сталь ЛАЗ — до 0,5% ниобия. Все эти стали обладают большой вязкостью в жидком состоянии и повышенной усадкой. Технология изготовления отливок сталей ЛА1, ЛА4 и ЛА5 представляет определенные трудности. Сварка этих сталей возможна, но технология ее несколько сложнее, чем для сталей ЛАЗ и 1Х18Н9ТЛ.  [c.199]

Хромоникелевые стали типа 18-8 без дополнительного легирования другими примесями, наряду с ценными свойствами, характерными для аустенитных сталей, обладают существенным недостатком — склонностью к межкристаллитной коррозии (после воздействия так называемых критических или опасных температур), возникающей в результате выпадения сложных карбидов железа и хрома по границам кристаллов аустенита и обеднения пограничных слоев аустенита хромом. Закалка, как уже указывалось, фиксирует аустенитное строение и этим самым предотвращает опасность межкристаллитной коррозии. С помощью закалки представляется возможным получить листовую катаную сталь типа 18-8, которая в состоянии поставки обладает стойкостью против межкристаллитной коррозии. При сварке такой стали определенные участки основного металла, расположенные по обе стороны от шва, подвергаются более или менее длительному нагреву в температурной области, ограниченной линиями GK и GE. Здесь foжeт развиться межкристаллитная коррозия. Чтобы этого не произошло, необходимо принять специальные меры — либо снизить содержание углерода в стали до предела растворимости в аустените при комнатной температуре, либо предотвратить обеднение аустенита хромом путем легирования стали элементами, обладающими большим сродством к углероду, чем хром. С этой, целью стали типа 18-8 легируют дополнительно титаном или ниобием с танталом. Оба эти элемента повышают прочность и жаропрочность стали.  [c.35]

Опыт показывает, что при индукционном нагреве можно получать размер зерна аустенита 11—14-го балла, в то время как при нагреве в лечи он обычно аходится в пределах 7—10-го балла, т. е, крупнее в 15—30 раз. Чем мель х зерно, тем выше сопротивление стали хрупкому разрушению (рис. 13), Как видно из рисунка, увеличение средней площади зерна аустенита с 40—50 (И—12-й балл) до 800 мкм (7—8-й балл) снижает хрупкую прочность примерно в б раз (разру-шающая нагрузка уменьшается с 600 до 120 кгс), Для получения наиболее мелкого зерна аустенита при электрозакалке следует применять наследственно мелкозернистые Стали с этой целью в сталь при выплавке вводят алюминий, титан, ванадий, ниобий и другие элементы, образующие в ней дисперсные частицы карбидов или нитридов. Как показано ниже, в определенной мере облегчает получение мелкого зерна аустенита применение мелкодисперсных исходных структур и размельчение термической обработкой так называемых вторых фаз (карбидов, нитридов), тормозящих рост зерна аустенита.  [c.255]

Стилоскопирование производится в следующем порядке зачищаются электрод и изделие устанавливается зазор между электродом и изделием 1—3 мм и зажигается дуга отыскивается нужная группа линий и производится оценка содержания искомых элементов. Определение элементов проводится в следующей носледователь-ности ванадий, хром, молибден, никель, титан, вольфрам, марганец, ниобий, кобальт, кремний. Следует отметить, что содержание углерода, фосфора и серы спектральными методами не определяется. Точность определения содержания элементов при стилоскопировании зависит от выбранной пары спектральных линий и в общем случае составляет 20 % от абсолютной величины концентрации элемента в стали. Например, если содержание элемента оценено 1 %, то фактическое содержание может находиться в пределах 0,8—1,2 %. При проведении стилоскопирования сталей, близких по содержанию легирующих элементов и назначению, целесообразно пользоваться рекомендациями, приведенными в табл. 3.3.  [c.67]

Марка легированной стали включает в себя определенные буквы и цифры, сочетание которых зависит от химического состава стали. Входящие в маркировку буквы расшифровываются следующим образом Г — марганец, С — кремний, X — хром, Н — никель, М — молибден, Ю — алюминий, В—.вольфрам, Т — титан, Ф — ванадий, Б — ниобий, К — кобальт, Д — медь, Р — бор, А — азот. Цифры, входящие в марку, указывают на содержание конкретного элемента в стали. Двузначное число, стоящее в начале марки стали, указывает на среднее содержание углерода в сотых долях процента. Цифра, стоящая справа от букв, обозначающих элементы, показывает примерное содержание в процентах этого элемента. Например, марка стали 12Х2Н4 говорит о том, что сталь содержит до 0,12% углерода, около 2% хрома и около 4% никеля. При содержании легирующего элемента менее 1 % цифры после букв не ставятся, например сталь 20ХНМ содержит 0,15 — 0.25,% углерода, а хрома, никеля и молибдена — менее 1%.  [c.10]

Наиболее радикальным средством борьбы с межкристаллитной коррозией аустенитных сталей является легирование их титаном или ниобием в количествах, обеспечивающих полное связывание всего имеющегося в стали углерода в стабильные карбиды титана и ниобия. Карбиды типа Т1С и КЬС не растворяются в аустените хромоникелевых сталей при всех практически возможных температурах термической обработки (аустенитизации). Поэтому в аустенитных сталях, легированных титаном и ниобием, отсутствуют пересыщенные углеродом твердые растворы, а следовательно, и условия для неблагоприятных структурных изменений по границам зерен, создающих чувствптельность к межкристаллитной коррозии. Эффективная стабилизация хромоникелевых сталей аустенитного класса достигается прп наличии определенных соотношений между титаном (нпобиелт) п имеющимся в стали углеродом. Для надежной стабилизации необходимо, чтобы со-держанпе титана было в 5—6 раз, а содержание ниобия в 10—  [c.334]

Влияние алюминия, ванадия, титана, ниобия, хрома, молибдена, бора, фосфора на деформЬционное старение, контролируемое по изменению напряжения текучести при температурах старения 20—250° С, исследовано в ряде работ [41, с. 9 134 135 171 175 176 177, с. 209 178—183]. Было установлено, что нитридообразователи алюминий, кремний, бор — при соответствующих их добавках могут существенно снизить склонность к старению при 100° С и ниже. Неоднократно было замечено, что совместное действие алюминия и кремния эффективнее, чем, например, одного алюминия [178], что связывают с более полным выделением азота в виде изоморфных нитридов алюминия и кремния в первом случае. Для получения действительно нестареющей в определенных условиях стали в случае введения алюминия и кремния необходима соответствующая термическая обработка, которая обеспечивает медленное охлаждение или выдержку в интервале, в котором происходит наиболее полное выделение нитридов. Такая термическая обработка особенно важна при высоких температурах аустенизации, когда  [c.96]

Введение в высокохромистую сталь больших количеств аустениза-тороБ (никель, марганец), расширяющих температурную область аустенита, позволяет перевести сталь в устойчивое аустенитное структурное состояние. Такие сталп называются аустенитными. Подбирая определенные соотношения между количествами элементов ферритизаторов (хром, кремний, молибден, вольфрам, ниобий) и элементов аусте-низаторов (углерод, никель, марганец), можно получить двухфазные аустенитно-ферритные стали с различным процентным содержанием ферритной фазы в стали.  [c.490]

Присадка титана или ниобия к нержавеющей хромоникелевой ста- ли уменьшает ее склонность к межкристаллитной коррозии после сварки или при эксплуатации в интервале 500—700°. Однако на практике было замечено, что такая сталь в определенных условиях все же обладает склонностью к межкристаллитной коррозии. Первоначальное объяснение этого явления недостаточностью содержания титана или ниобия не подтвердилось. Исследованиями [21] было установлено, что сталь 1Х18Н9Т после закалки при высоких температурах (1 100—1200°) содержит значительное количество углерода, не связанного в карбиды, титана или ниобия, а находящегося в твердом растворе. В результате этого, несмотря на наличие в стали титана, нагрев ее при температуре 500—700° приводит к образованию карбидов хрома и возникновению склонности к межкристаллитной коррозии. Это явление может быть объяснено, растворимостью карбидов титана или ниобия в аустените при Температуре нагрева выше 1 050—1 100°, в связи с чем при отпуске появляется возможность образования карбидов хрома.  [c.22]


Во [ ремя иагрева преимущественно выделяются карбиды хрома типа СггаС - Аустеиитиые хромоникелевые стали типа 18-8 обычно имеют в структуре определенное количество феррита. Оно определяется конкретным соотношением элемеЕгтов в пределах марки, С ростом содержания кремния, титана, ниобия, молибдена, алюминия, хрома количество феррита увеличивается,  [c.24]

Технология горячей обработки стали типа Х18Н10Т должна строиться с учетом изменения сопротивления деформации по мере роста температуры металла, пониженной теплопроводности стали, макроструктуры и фазового состава металла в литом состоянии, химического состава, в том числе микросодержания полезных и вредных элементов. Фундаментальные исследования Н. С. Алферовой [216] показали повышение пластичности хромоникелевой нержавеющей стали с титаном и ниобием по мере повышения температуры, но до определенного предела (рис. 73). Одновременно была показана пониженная пластичность аустенитной нержавеющей стали, особенно с повышенным содержанием а-фазы, по сравнению с углеродистой и ферритной нержавеющей сталью. Наибольшая пластичность стали типа Х18Н10Т была при 1175—1250° С.  [c.300]

Карбидная фаза в легированной стали. Элементы-карбидообра-зователи — титан, ванадий, хром, марганец, цирконий, ниобий, молибден и вольфрам — сосредоточены в определенном месте периодической таблицы Менделеева, занимая группы IV, V, VI, VH и ряды 4, 6, 8 и 10.  [c.307]

При сварке аустенитных сталей действие углерода проявляется по-разному, в зависимости от изменения его концентрации, а также композиции шва и содержания в нем легирующих примесей. При повышении содержания углерода в швах типа 18-8 от 0,06—0,08% до 0,12—0,14%, наблюдаемом, например, при сварке в Og, склонность к трещинообразованию может возрасти, причем склонность к трещинам заметно усиливается, если в шве содержится титан, ниобий и другие энергичные карбидообразователи. В этом случае вредное действие углерода связано с появлением по границам кристаллов аустенита легкоплавких карбидных звтектик ледебурит-ного типа. Иными словами, углерод в данных условиях действует так же, как при сварке углеродистых и низколегированных сталей. В связи с этим необходимо указать на недопустимость использования электродной проволоки со следами графитовой смазки на поверхности. Дальнейшее повышение содержания углерода, например до 0,18—0,20%. приводит к резкому усилению трещино-образования. В этом случае вредное влияние углерода усиливается вследствие аустенитизации структуры шва. В известном диапазоне концентраций углерод по своему действию уподобляется никелю — он способствует утолщению межкристаллитных прослоек (аустени-тизация) и снижению температуры их затвердевания. По мере дальнейшего увеличения содержания углерода в шве, по достижении определенной критической концентрации, влияние этого элемента на трещинообразова ние внезапно изменяется. Углерод из возбудителя горячих трещин превращается в средство их устранения [15, 25]. Изменение поведения углерода связано с измельчением структуры и увеличением количества эвтектической жидкости, которая, заполняя промежутки между кристаллами, залечивает горячие трещины.  [c.198]

Введение титана или ниобия в количестве больше десятикратного содержания углерода устраняет появление у стали склонности к межкристаллитнойкоррозии после нагрева в определенном опасном интервале температур.  [c.361]


Смотреть страницы где упоминается термин Ниобий Определение в стали : [c.61]    [c.97]    [c.36]    [c.705]    [c.50]    [c.90]    [c.74]    [c.45]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.106 ]



ПОИСК



Ниобий

Ниобий Определение в стали фениларсоновой

Ниобий Определение в стали хлорнокислое

Ниобит 558, XIV



© 2025 Mash-xxl.info Реклама на сайте