Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механическая нагрузка на сварочным

Методы, касающиеся построения механических колебательных систем и позволяющие в максимальной степени снизить влияние нагрузки на сварочный наконечник, изложены в гл. П1.  [c.118]

Возможно осуществить несколько вариантов оснащения робота. В первом используется стандартное сварочное оборудование сварочные клещи монтируются на кисть робота, сварочный трансформатор размещается в рабочей зоне сварки и управление технологическими параметрами процесса сварки осуществляется традиционной автоматической аппаратурой. Для синхронизации действий во времени предусматривают каналы внешних связей робота с аппаратурой управления клещами и устройством фиксации заготовки. Основной недостаток этого варианта заключается в том, что толстые силовые кабели вторичного контура, соединяющие сварочные клещи с трансформатором, размещаемым вне машины, оказывают значительную механическую нагрузку на кисть робота, а также ограничивают рабочую зону и выбор позиций для сварки.  [c.98]


Таким образом, различные зоны сварного стыкового соединения обладают неодинаковым сопротивлением развитию усталостных трещин, на которое существенное влияние оказывает режим сварки. Это сопротивление определяется механическими свойствами материала, в котором распространяется трещина, и напряженным состоянием, создаваемым внешней нагрузкой и сварочными напряжениями.  [c.212]

Механическая колебательная система характеризуется рядом параметров, из которых важнейшим являются колебательная скорость и сила на выходе системы — сварочном наконечнике. Колебательная сила, появляющаяся на сварочном наконечнике, является следствием возникновения сопротивления нагрузки. При рассмотрении влияния на сварку колебательной скорости сварочного наконечника, принимая частоту системы постоянной, с равным успехом можно оперировать амплитудой колебательного смещения I e. На при условии, что система работает в резонансе, активное сопротивление нагрузки оказывает существенное влияние. В общем случае, чем больше это сопротивление, тем меньше амплитуда lee-  [c.11]

Изложенные соображения относительно влияния сопротивления нагрузки на амплитуду колебаний сварочного наконечника были проверены экспериментально. Для этого использовались механические колебательные системы по типовым схемам, показанным на рис. I, а и б. Конструкции систем позволяли получать  [c.14]

Сварочный наконечник в процессе сварки находится в сложном термомеханическом состоянии. Попеременный нагрев и охлаждение, механические нагрузки и элементарное истирание в зоне контакта со свариваемым металлом приводят к его интенсивному износу. Растрескивание и выкрашивание центра наконечника сказывается на качестве сварных соединений. Кроме того, в процессе сварки происходит налипание свариваемого материала на поверхность сварочного наконечника. Иногда это налипание настолько сильно, что его зачистку необходимо производить после  [c.45]

В гл. I при рассмотрении физических условий ввода энергии в зону сварки было сформулировано одно из основных требований к механической колебательной системе, позволяющее стабилизировать скорость смещения сварочного наконечника при изменении сопротивления нагрузки. На стабильность влияет и изменение теплового состояния колебательной системы и колебания напряжения сети.  [c.115]


Концы хоботов вставляются в цилиндрические отверстия разъемных колодок и прочно зажимаются болтами. При наладке хоботы выдвигают из колодок на определенную величину в пределах 50—100 мм в зависимости от ширины свариваемых деталей или поворачивают на некоторый угол. Стандартная длина хоботов обеспечивает вылет электродов (расстояние от центра электрода до передней стенки машины) в пределах 500—800 мм. Для сварки крупных деталей изготовляют специальные, удлиненные хоботы. При постоянной величине усилия между электродами с увеличением длины хобота увеличиваются изгибающий момент и прогиб, что необходимо учитывать при эксплуатации сварочной машины. С увеличением механической нагрузки возрастает также электрическое сопротивление сварочного контура, что приводит к снижению мощности машины. В табл. 6 приведены величины свароч-  [c.47]

После окончания всех сварочных работ втулка была подвергнута отпуску при 680 °С с выдержкой в течение 3 ч и охлаждением вместе с печью. Заваренная втулка механически обрабатывалась на расточном станке, в том числе и по торцовой поверхности, где производилась сварка. Были проверены конусность и овальность внутреннего отверстия, рассверлена часть заваренных отверстий для элементов нагревателей, исправлена овальность в деформированных отверстиях. Восстановленный корпус контейнера успешно работает с полной нагрузкой уже в течение нескольких лет. Можно считать, что выполненный ремонт позволил восстановить в полной мере прочность и работоспособность сложной для механической обработки детали, работающей в очень тяжелых условиях по нагрузкам.  [c.85]

Способ присоединения контактных машин к цеховой электросети имеет большое значение как для работы этих машин, так и для эксплуатации других электрических машин и аппаратов, находящихся в цехе. Контактная машина, как правило, снабжена однофазным трансформатором. Поэтому при наличии нескольких контактных машин в цехе их следует питать от различных фаз, обеспечивая по возможности равномерное распределение нагрузки между всеми фазами. При кратковременном включении сварочной машины большой мощности часто наблюдается резкое падение напряжения в цеховой сети, ведущее к неприятному миганию электрических ламп. Этого можно избежать питанием мощных сварочных машин от отдельного силового трансформатора. В цехах с большим количеством сварочных машин такая система питания дает наилучшие результаты и широко применяется. Особенно неблагоприятно сказывается на работе цеховой сети включение мощных сварочных машин между фазой и землей (иногда делаются попытки включить таким образом машину с трансформатором на 220 в в сеть 380 в), так как оно ведет к значительному перекосу фаз, напряжение на зажимах сварочного трансформатора при таком включении может упасть против номинального на 20—30 / , а напряжение на других фазах, наоборот, может вырасти. Это вызывает ускоренное перегорание электроламп и ненормальную работу электродвигателей, в результате которой, в частности, возможно ухудшение качества механической обработки на металлорежущих станках.  [c.306]

При работе сварочного автомата под Бездействием внешних факторов, называемых возмущениями, происходит изменение технологических параметров сварки (напряжения дуги, сварочного тока, скорости сварки и скорости подачи электрода). К возмущениям относятся нестабильность напряжения сети, нестабильность моментов нагрузки на валу электродвигателя перемещения сварочного автомата и на валу электродвигателя подающего механизма электродной проволоки, наличие зазоров в механических передачах и др. Отклонение того или иного технологического параметра сварки под воздействием внешних факторов называют погрешностью регулирования замкнутой системы. В эту систему входят источник питания сварочной дуги, сварочный автомат, сварочная дуга и сварной шов (система И-А-Д-Ш).  [c.136]

Из изложенного очевидна правильность рекомендаций [34] об изменении нанравления колебаний наконечника но отношению к свариваемым листам. При сварке пластин типа показанных на рис. 18 (это не обязательно прямые пластины) действительно имеет смысл выбрать направление колебаний поперек пластин что затруднит возбуждение изгибных (отрывающих) колебаний вдоль пластины, так как это изменит жесткость деталей в направлении колебаний сварочного наконечника. Далее становится очевидным, что демпфирующие массы, препятствующие воздействию изгибных колебаний на уже сваренные соединения, должны располагаться поперек пластин и по возможности ближе к сваренным соединениям, чтобы уменьшить дополнительную комплексную нагрузку на механическую колебательную систему.  [c.94]


Используя изложенные в этом параграфе сведения, можно сделать некоторые заключения о нагрузке, на которую работает механическая колебательная система через посредство сварочного наконечника. Размеры последнего обычно заметно меньше длины волны изгибных и продольных колебаний в пластинах. Отсюда (а также из результатов опытов с пластинами) следует, что его можно рассматривать как точечный источник, который, как известно, является малоэффективным возбудителем колебаний Низкая эффективность такого источника связана с наличием большой присоединенной массы М. Как показывает опыт, нагрузка на колебательную систему действительно имеет инерциальный характер, о чем свидетельствует понижение резонансной частоты колебательной системы при сварке (см. 5). По-видимому, величины реактивной и активной (см. 2) составляющих этой комплексной нагрузки непосредственно зависят от толщины верхней детали, что позволяет отчасти объяснить трудности сварки толстых деталей.  [c.95]

Оценка влияния абсолютных размеров на сварные соединения при циклических нагрузках усложняется вследствие гетерогенности сварного соединения (как по механическим свойствам, так и по структуре), наличия сварочных остаточных напряжений и концентрации напряжений, вызываемой геометрической формой шва и технологическими дефектами. Указанные факторы сильно затрудняют моделирование сварных деталей и элементов сооружений.  [c.38]

Необходимое условие коррозионного растрескивания — наличие растягивающих рабочих (активных) или остаточных (внутренних) напряжений. По своему происхождению эти напряжения могут быть самыми различными механическими, термическими, вызванными фазовыми превращениями, сварочными и т. д. Напряжения сжатия не вызывают этого вида коррозии [4]. С ростом растягивающих напряжений хлоридное растрескивание аустенитных сталей, как правило, ускоряется, и наоборот, снижение величины растягивающих напряжений затормаживает его наступление. По данным работ [52, 53, 57], несмотря на значительное замедление коррозионного растрескивания со снижением нагрузки для аустенитных сталей типа 18-8 не существует какого-либо порога или предела напряжений, ниже которого можно не опасаться разрушения (даже для отожженных материалов). Зафиксированы случаи растрескивания сталей 18-10 вообще без внешней нагрузки, только за счет внутренних напряжений, составляющих по расчетам 2—3,5 кгс/мм2 [58].  [c.90]

Запись тока, напряжения и активной мощности системы в режимах холостого хода и сварки показывает, что переходный процесс, обусловленный реакцией нагрузки, находится в пределах 0,15 сек и равен времени раскачки системы в режиме холостого хода. В дальнейшем и и стабильны. Запись амплитуды смещения сварочного наконечника в процессе сварки показывает, что 1св в заданных условиях также стабильна и разброс ее находится в пределах не более 0,5%. Зависимость механической прочности соединений меди различной толщины от изменения частоты генератора показана соответственно кривыми 1, 2 и 3 (рис. 70). Здесь же показаны резонансные кривые в режиме сварки (кривая ) и в режиме холостого хода (кривая 5). Из рисунка видно, что стабильность частоты генератора в пределах 0,2% обеспечивает прочность сварных соединений на уровне 0,9 от номинальной Рср. При этом следует отметить, что с уменьшением толщин свариваемых металлов критичность расстройки частоты питающего тока относительно собственной частоты колебательной системы снижается.  [c.119]

Контактор на управляемых кремниевых вентилях. Игнитронные контакторы и прерыватели имеют значительные преимущества перед механическими и электромагнитными контакторами. Применение бесконтактного включения и выключения мощных трансформаторов сварочных машин упрощает их обслуживание и дает возможность резко повысить производительность контактной сварки. Однако игнитронные контакторы имеют существенные не- достатки, главные из которых падение напряжения в дуговом разряде (около 20 в) и зависимость надежности зажигания от качества ламп и величины внешней нагрузки.  [c.124]

При уменьшении в сварочной ванне кремния, марганца и углерода удаление растворенной закиси железа РеО может приостановиться, а избыток кислорода (в виде закиси железа) в наплавленном металле поведет к ухудшению его механических свойств. Особенно понижается вязкость металла шва, поэтому соединения, выполненные газовым пламенем с избытком кислорода, не могут работать длительное время на циклическую нагрузку. Другим недо-  [c.70]

Во втором варианте токоподводящие шины вторичного контура вводят в механическую конструкцию робота, а сварочный трансформатор встраивают в сварочную головку [93] или укрепляют на траверсе руки робота [107]. При этом целесообразно совместить устройство управления технологическими параметрами сварки с устройством управления робота. Здесь появляются проблемы, связанные с увеличением инерции и габаритов нагрузки, а также самого манипулятора.  [c.98]

Отклонение размеров бапдажей от номинальных создает неравномерную нагрузку на поверхности каченпя бандажа и роликоопор, что влечет за собой их быстрый износ. Поэтому ири сварке бандажей ие допускают отклонения их от правильной цплинд-рпческой формы. Нарушения геометрии бандажа, вызванные сварочными усадками и деформациями, могут быть полностью ликвидированы механической обработкой после сварки.  [c.447]

Механические нагрузки и прочность оболочек. Вакуумные камеры при обычном давлении не испытывают иных механических нагрузок, кроме давления окружающего воздуха. Поэтому они рассчитываются на равномерно распределенную внешнюю нагрузку в 1 кг на 1 см поверхности их стёнок. Такое незначительное давление на стенки позволяет изготовлять эту категорию камер сравнительно тонкостенными, но с обязательным соблюдением правильных, устойчивых форм, особенно при более или менее крупных размерах сосудов с выпуклыми сферическими, коробчатыми или коническими крышками и с довольно толстыми днищами и соединительными фланцами. Прямоугольные формы и плоские стенки, крышки и днища в вакуумной камере нежелательны и должны применяться только в случаях действительной необходимости. Технологичными являются во всех видах вакуумной аппаратуры цилиндрические формы с использованием для обечаек стандартных цельнотянутых или цельнокатаных труб, а при больших диаметрах сварных цилиндров — вальцованных труб из листа. Для небольших аппаратов, работающих без повышенного давления, толщина стенок обычно задается не расчетом на прочность, а технологическими соображениями. Стенки должны иметь толщину, позволяющую производить надежную и дешевую сварку, пайку и механические крепления. В табл. 6 приведены рекомендуемые толщины стенок (мм) сварочных камер из стали, без повышенного давления.  [c.69]


В сложных системах процесс изменения начальных параметров характеризуется большим числом Взаимосвязей, разнообразными воздействиями на систему и возникновением неодинаковых по природе процессов старения. Все это приводит к формированию основных показателей надежности всего изделия и в первую очередь к пок азателям степени его удаленности от предельного состояния. В соответствии с представлением о действии энергии на машину при ее эксплуатации (см. гл, 1, п, 3) на рис. 62 показана схема формирования показателей надежности сложной системы. Энергия, действующая на машину при ее эксплуатации , слагается из воздействий энергии окружающей среды энергии рабочих процессов машины Wпотенциальной энергии технологических процессов — напряжения в отливке, в сварочном шве, в поверхностном слое обработанной детали и т, п. и энергии воздействий на машину при ее ремонте и техническом обслуживании 4. Проявляясь в виде механической, тепловой, химической, электромагнитной и в других формах, энергия определяет условия работы. машины и ее элементов нагрузки, напряжения, температуры, скорости и ускорения, химические воздействия, давления, электромагнитные силы и др.  [c.193]

Сварка н наплавка стальных деталей. Сварка и наплавка ручным способом ведется электродами с тонкими (0,10—0,25 мм на сторону) и толстыми (0,5—1,5 мм на сторону) покрытиями для защиты сварочного шва от вредных действий воздуха. Тонкие покрытия (чаще всего из 80—85% мела и 20—15 % жидкого стекла) способствуют устойчивости горения дуги и поэтому их называют стабилизирующими или ионизирующими покрытиями. Электроды с тонкими покрытиями используют для сварки малоответственных деталей, работающих при статических нагрузках. Толстые покрытия являются защитно-леги-рующими. В них входят газошлакообразующие, легирующие вещества и раскислители, способствующие формированию шва с повышенными механическими свойствами. Электроды с толстыми покрытиями применяют для сварки и наплавки ответственных частей из углеродистых и низколегированных сталей. Для наращивания изношенных поверхно стей стальных деталей используют наплавочные электроды, обеспечи вающие получение плотного слоя металла необходимой твердости [13]  [c.80]

Механические свойства С. Многочисленные испытания пробных сварных конструкций свидетельствуют о том, что при правильно выполненной сварке можно получить шов с сопротивлением, равным по крайней мере 80— 90% сопротивления основного материала свариваемых предметов. В отдельных случаях, например в швах с утолщением или в особенно толстых галтельных швах, сопротивление шва может оказаться даже ббльшим, нежели в основном металле. Т.к. качество швов при С. плавлением в значительной мере зависит от надежности и искусства сварщиков и нельзя рассчитывать на то, что последние всегда стоят надолж-ной высоте, то при подсчете механич. свойств сварочных швов целесообразно брать за основу сопротивление их не выше 70% сопротивления основного материала, а в изделиях со значительной нагрузкой следует ограничиваться даже меньшим процентом, В СССР по единым нормам строительного проектирования при применении дуговой электросварки для соединения частей металлич. конструкции из стали и торгового железа установлены следующие допускаемые напряжения, а) При расчете сварного шва допускаемые напряжения для материала шва принимаются согласно табл. 16.  [c.122]

Досгоинством электромагнитных муфт по сравнению с механическими являются а) возможность управлять работой муфты с любого места, что очень удобно для механизации и автоматизации сборочно-сварочных работ б) муфту легко отрегулировать на необходимую величину нагрузки, и при увеличении нагрузки сверх установленной муфта будет скользить. На фиг. 129 показана схема вклю,-чения муфты в электросеть.  [c.157]

Остановимся на вопросе о мощности /, ,, отдаваемой генератором в нагрузку (колебательная система — зона сварки). Мы приводили численные значения именно этой мощности [34], а не мощности, отдаваемой в зону сварки, полученные простым умножением мощности, потребляемой генератором из сети, на его к. п. д. и к. п. д. электроакустического преобразователя. Столь грубая оценка, конечно, завышена для значений мощности, идущей непосредственно на сварку, так как часть мощности рассеивается в колебательной системе и в деталях вне зоны сварки. Возможны и более непосредственные оценки мощности, передаваемой в зону сварки, с учетом кц, измеренного в рабочей части изгибно-колеблющегося стержня [73], которые, например, при сварке меди 5= 0,2+0,2 мм на машине с паспортной мощностью 1,5 кет (МТУ-1,5) дают величину 115 вт. Соответственно энергия Е, отдаваемая в зону сварки, равна =/ -т 300 вт сек. Для технических надобностей годятся показанные грубые оценки сварочной мощности. На наш взгляд, более важны вопросы зависимости энергии, затрачиваемой на сварку, от толщины и механических характеристик материала свариваемых деталей (например, от его твердости /7б) и о взаимосвязи и Знание это11 взаимосвязи позволило бы регулировать важный параметр режима Ед только с помощью электрического генератора. В ряде работ показано, что зависимость (Рэл) — линейная в некоторых пределах при неизменной толщине деталей (см., например, [21]). Для выбора мощности генератора для заданных объектов сварки необходимо знать зависимость Р (8) шР Нв). Известны две эмпирические зависимости (8) для сварки меди толщиной 8=0,1—0,3. иж Рэд о [50] и —8 " для сварки листов одинаковой толщины в широком диапазоне толщин [34]. Физическая сущность таких зависимостех не очевидна. Можно лишь полагать, что увеличение 8 повышает силу сопротивления колебаниям сварочного наконечника и рассеяние энергии в деталях вне зоны сварки. Мы полагаем само собой ])азумеющимся, что с ростом 8 обычно увеличивают площадь сварного соединения и соответственно повышаются затраты энергии Е непосредственно на сварку. Что касается зависимости величины Е от свариваемого  [c.143]


Смотреть страницы где упоминается термин Механическая нагрузка на сварочным : [c.220]    [c.377]    [c.208]    [c.385]    [c.152]    [c.18]    [c.92]    [c.28]    [c.77]    [c.78]   
Сварка пластмасс ультразвуком (1974) -- [ c.0 ]



ПОИСК



Механические нагрузки



© 2025 Mash-xxl.info Реклама на сайте