Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нелинейные взаимодействия в оптике

При синхронных взаимодействиях реализуются накапливающиеся нелинейные взаимодействия, в результате к-рых энергия одной интенсивной волны может быть полностью преобразована в энергию первоначально слабых волн др. частот (см. Нелинейная оптика).  [c.274]

Использование в оптическом эксперименте лазерных источников света привело к открытию ряда явлений, не совместимых с принципом линейности. Практически одновременно с созданием первых лазеров были обнаружены такие нелинейные оптические явления, как генерация гармоник, сложение и вычитание частот световых потоков, вынужденное комбинационное рассеяние света, двухфотонное поглощение. Было ясно также, что сам лазер — это оптическая система, в которой важную роль играет эффект насыщения усиления света активной средой. Все это стимулировало бурное развитие теоретических и экспериментальных исследований нелинейного взаимодействия света с веществом, разработку методов практического использования нелинейных оптических явлений в науке и технике и привело, в частности, к возникновению нелинейной оптики.  [c.298]


ФАЗОВЫЙ СИНХРОНИЗМ (волновой синхронизм) при нелинейном взаимодействии волн—условие наиб, эффективного энергообмена между собственной и вынуждающей волнами среды, имеющими одинаковые частоты. Напр., в нелинейной оптике вынуждающей волной может быть волна нелинейной поляризации, ловие Ф. с. выражается равенством волнового вектора к собств. волны среды волновому вектору А, вынуждающей волны (Л = А,). Разность волновых векторов Ак=к—к, наз. фазовой (волновой) расстройкой. Нелинейные взаимодействия волн, происходящие при наличии Ф. с. (Д = 0), принято называть синхронными (см. Синхронизм).  [c.273]

Генерация предельно коротких импульсов, разумеется, далеко не единственный стимул этих исследований. Нелинейная оптика внесла большой вклад в физику солитонов использование нестационарных нелинейных взаимодействий лежит в основе эффективных методов нелинейной лазерной спектроскопии.  [c.16]

Изучение нелинейных явлений в различных средах всех лазерных систем составляет предмет изучения нелинейной оптики. Нелинейные явления в мощных лазерах и лазерных системах неотделимы от процесса взаимодействия излучения с активной средой, усиления и генерации. Так же как и в нелинейной оптике, все нелинейные явления в элементах лазерных систем можно разделить на три большие группы 1) генерация гармоник, включая процессы преобразования частоты (в результате сложения или вычитания частот) 2) явления самовоздействия, определяемые зависимостью от интенсивности излучения, показателя преломления и коэффициента потерь 3) явления нелинейного рассеяния, сильно зависящие от механизма рассеяния.  [c.196]

Для понимания физических явлений нелинейной оптики рассмотрим традиционную в оптике модель среды, состоящей из неподвижных, взаимодействующих между собой, осцилляторов во внешнем световом поле. В ней учет нелинейных эффектов означает учет ангармонизма осцилляторов (либо нелинейную зависимость сил трения от поля).  [c.7]

Обобщены первые результаты натурных экспериментов по распространению пучков высокоинтенсивного лазерного излучения на приземных трассах. Проиллюстрированы принципиальные возможности использования нелинейных и когерентных взаимодействий в качестве физической основы новых методов лазерного и оптико-акустического зондирования атмосферы.  [c.4]


Свойства лазерного пучка испытывают сложные преобразования в процессе нелинейного взаимодействия со средой и, таким образом, условия возникновения нелинейных эффектов изменяются. Происходит взаимовлияние излучения и среды друг на друга. Исследование процесса нелинейного преобразования лазерного излучения в условиях атмосферы, сложной динамической среды, составляет главное содержание нелинейной оптики атмосферы.  [c.8]

Предметом исследования нелинейной оптики атмосферного аэрозоля являются эффекты, возникающие при взаимодействии мощного лазерного излучения с аэрозольным компонентом атмосферы, а также распространение излучения в условиях действия данных эффектов. Специфика обсуждаемых задач состоит в широком разнообразии нелинейных эффектов в аэрозолях, с одной стороны, в чрезвычайной изменчивости микрофизическим и оптических характеристик аэрозолей, а также метеоусловий, с другой стороны.  [c.30]

В последнее время обсуждался и оценивался ряд аналогичных механизмов ОВФ в акустике [Бункин и др., 1981]. При этом, как и в оптике, возможны и объемные зффекты, и их поверхностные аналоги, когда нелинейное взаимодействие осуществляется на границах раздела. Рассмотрим вкратце некоторые возможные механизмы ОВФ в акустике.  [c.199]

При распространении в веществе очень интенсивных световых волн, напряженность поля в которых сравнима с напряженностью внутриатомных электрических полей (сфокусированное лазерное излучение), принцип суперпозиции нарушается, что приводит к разнообразным явлениям нелинейного взаимодействия волн, изучаемым нелинейной оптикой (см. гл. 10).  [c.202]

После создания мощных квантовых генераторов на оптических частотах (лазеров) возникла и в последние годы бурно развивается самостоятельная область исследований — нелинейная оптика. Понятие нелинейная оптика охватывает все явления в области высоких (оптических) частот, связанные с нелинейностью материальных уравнений в системе уравнений Максвелла. Большой интерес к этому разделу физики объясняется многими причинами. Нелинейная оптика создала новые возможности для изучения поведения ядер, атомов, молекул и твердых тел в электрических полях высокой напряженности. Кроме того, были найдены новые применения теории излучения и сформулированы законы распространения электромагнитных волн в нелинейных средах. Лазеры нашли необычайно широкие применения в самых различных областях науки и техники. При помощи нелинейных оптических эффектов можно получить новую информацию об отдельных атомах и молекулах и об их взаимодействии в плотных средах. На основании различных нелинейных оптических эффектов удалось создать новые когерентные источники света высокой интенсивности, частично с перестраиваемыми частотами. Кроме того, методы нелинейной оптики могут служить основой для развития других нелинейных теорий.  [c.8]

В этом параграфе мы рассмотрим так называемый линейный электрооптический эффект, который в действительности основан на нелинейном взаимодействии второго порядка. Этот эффект был открыт Поккельсом еще в 1893 г. Открытие этого эффекта еще до введения в оптику мощных лазерных источников света было возможным потому, что в этом эффекте, как и в нормальном эффекте Керра, проявляется влияние сильного, однородного, постоянного поля 5.(0) на свойства среды по отношению к распространению оптических волн, амплитуды которых в принципе могут быть сколь угодно малыми. Как эффект второго порядка эффект Поккельса выступает только в кристаллах без центра инверсии (см. разд. 1.22). В средах с центром инверсии, например в изотропных веществах, аналогичный эффект может наблюдаться только в третьем порядке в этом случае он называется эффектом Керра. Для эффекта Поккельса основное соотношение между амплитудами поляризации и напряженности поля имеет вид  [c.164]


Эффекты линейной и нелинейной оптики обусловлены взаимным влиянием электромагнитного поля и вещества в газовой и конденсированной фазах. При квантовом описании это влияние учитывается при помощи члена взаимодействия в полном гамильтониане системы в 2.1 представлены соответствующие выражения как для полуклассического, так и для полностью квантового рассмотрения. Если член взаимодействия задан, то последовательное применение квантового формализма позволяет в принципе точно представить и рассчитать величины, имеющие физический смысл плотности излучения, вероятности переходов и соответствующие им скорости изменения населенностей. Однако затрата труда для необходимых расчетов должна находиться в разумных пределах. Поэтому оказывается целесообразным заранее учесть в основных уравнениях те или иные особенности изучаемого эффекта, не допуская при этом по возможности снижения прогнозирующей способности получаемых решений. Приведем типичные примеры приближенных методов такого рода учет отношения порядков величин длин взаимодействующих электромагнитных волн и линейных размеров рассматриваемой атомной системы, пренебрежение нерезонансными членами, упрощенное описание процессов без потерь и влияния диссипативных систем. Эти методы описываются в 2.2. Их применение дает возможность при существенном сокращении вычислительных трудностей сделать в явном виде наиболее важные физические выводы и установить относительно несложные корреляции между теоретическими результатами и экспериментальными дан-  [c.174]

Н. а. занимает промежуточное место между линейной теорией звука и теорией ударных волн. Предметом её исследований являются слабо нелинейные волны, в то время как ударные волны, как правило, сильно нелинейны в классич. же акустике нелинейные эффекты не рассматриваются вообще. Н. а. близка к нелинейной оптике и др. разделам физики нелинейных волн. К осн. вопросам, к-рыми занимается совр. Н. а., относятся распространение волн конечной амплитуды, звуковые пучки большой интенсивности и их самовоздей-ствие, нелинейное поглощение и взаимодействие волн, особенности нелинейного взаимодействия в твёрдых телах, генерация и распространение интенсивных шумов, усреднённые э екты в звуковом поле, акустич. кавитация и др.  [c.288]

Более детальный анализ показывает, что это предположение обосновано для анизотропной среды ( ор(Маль-пые волны которой имеют -определенные направления поляризаций), но для изотропной среды выполняется лишь в частных случаях, поскольку здесь поляризации нормальных волн произвольны, В общем же случае нелинейного взаимодействия в оптически изотропной среде (например, генер-ации второй гармоники в кристалле типа ОаАз, вынужденном -комбинацианно-м рассея-нии или вынужденном рассеянии Мандельштама — Бриллюэна в жидкостях) уравнения первого порядка являются векторными и описывают одновременно изменение амплитуд и поляризаций -взаимодействующих волн. Более детально этот вопрос рассмотрен в работе [41]. Заметим, кстати, что в теории нелинейных -волновых явлений в диспергирующих средах плодотворным оказывается использование идей, а в ряде случаев и конкретных методов нелинейной теории колебаний (например,. при анализе системы уравнений для связанных волн полезным оказывается метод фазовой плоскости и т. п.). Эта сторона нелинейной оптики подробно обсуждается в работе [41] там же можно найти и -соответствующую библиографию.  [c.20]

Здесь уместно сделать некоторые пояснения. Понятие когерентной длины нелинейного взаимодействия для расходящегося пучка, введенное в этом параграфе, не следует путать с понятием длины когерентного взаимодействия для плоской волны, введенным ранее [см., иапример, формулу (4.14)]. При этом в обоих случаях рассматриваются строго монохроматические волны, так что фазовые соотношения между основной волной и гармоникой остаются регулярными как для I < 1кат, так и для I > / ог- Когерентная же длина является пространственным масштабом нелинейного взаимодействия, на котором сохраняется определенный закон нарастания интенсивности гармоники с расстоянием. Таким образом, использование термина когерентный представляется здесь не совсем удачным, поскольку обычно его связывают оо статистикой. Когерентная длина, имеющая статистическую природу, появляется в нелинейной оптике при исследовании нелинейных взаимодействий в статистически неоднородной среде или же при исследовании нелинейных взаимодействий волн с конечной шириной спектра в этом случае при  [c.195]

С анизотропией (и гиротропией) связаны разнообразные явления. Однородная А, с. оказывает существенное влияние на свойства распространяющихся в ней нормальных волн, определяя, в частности, их поляризацию и различие направлений распространения boj -нового (фазового) фронта и энергии волн (см, также Кристаллооптика И Двойное лучепреломление). В неоднородной А. с. может происходить линейное вз-действие поляризов, волн (см. Линейное взаимодействие волн), приводящее к перераспределению энергии между нормальными волнами, но не нарушающее суперпозиции принцип. Последний нарушается в случае нелинейного взаимодействия волн, к-рое в А. с. также обладает своеобразными анизотропными свойствами (см. Нелинейная оптика и Нелинейная акустика). См. также Анизотропия, Магнитная анизотропия, Оптическая анизотропия.  [c.84]

Л, п. у. применяют в разл. задачах асимптотич. теории дифракции при медленной изменении параметров среды, при расчётах квазиоптич. линий передачи и резонаторов. Возможно также обобщение Л. п. у. на диспергирующие и нелинейные среды, в частности, с его помощью исследованы пространственные структуры в нелинейной оптике, рассчитаны аффекты самофокусировки, параметрич. взаимодействия волн, обращения волнового фронта и т. д.  [c.582]


Многообразные волновые взаимодействия и самовоз-действия фактически определяют гл, черты поведения мощных лазерных пучков в материальной среде. Разработка эфф. методов управления продольными и поперечными нелинейными взаимодействиями позволила реализовать в оптике разнообразные эффекты нелинейной волновой динамики — параметрич. взаимодействия, ударные волны, генерацию структур, солитоны, спиральные волны, турбулентность.  [c.294]

Нелинейные преобразования коренным образом изменяют статистику поля. Это хорошо известно в ста-тистич. радиофизике и в полной мере проявляется в оптике. Статнстич. свойства сформированного в установившемся режиме лазерного излучения радикально отличаются от свойств гауссовского теплового излучения. С существ, изменением статистики приходится сталкиваться при генерации оптич. гармоник и комбинац. частот, в разнообразных самовоздействиях. Многие из перечисленных эффектов имеют по существу классич. природу, квантовый характер света в них не проявляется. Тем больший интерес представляет формирование с помощью нелинейных преобразований новых квантовых состояний светового поля, новых макроскопич. квантовых состояний. Наиб, яркий пример — генерация т. н. сжатых состояний поля, возникающая при параметрич. взаимодействиях. В 60-х гг. они были исследованы для классич. полей, в 80-х гг. выяснено, что они могут реализоваться и для квантованных попей. При этом возникают нетривиальные возможности управления квантовыми флуктуациями светового поля.  [c.303]

НЕЛИНЕЙНАЯ СПЕКТРОСКОПИЯ — совокупность методов оптич. спектроскопии, базирующихся на применении эффектов нелинейной оптики. Методами Н. с. исследуют нелинейные оптич. восприимчивости — их частотную дисперсию, симметричные свойства, изменения во времени и т. и., а также изменения линейных оптич. характеристик вещества (показателя преломления, коэф. поглощения, анизотропии и оптич. активности), вызванные нелинейным взаимодействием мощного оптич. (лазерного) излучения с исследуемым веществом, Н. с. относится к лазерной спектроскопии, т. к. для реализации всех методов Н. с. используется лазерное излучение одной или неск. длин волн. Одной из разновидностей Н. с. является активная лазерная спектроскопия. Первые работы по Н. с. появились в 1964—66, широкое развитие она получила после созда-Бия плавно перестраиваемых по частоте лазеров, а также лазеров со стабилизиров. узкими линиями генерации, лазеров, испускающих сверхкороткие световые импульсы с длительностью в пико- и фемтосекундном диапазонах, и др.  [c.306]

Методы получения сжатых состояний основываются на нелинейных радиофиз. и оптич. процессах. В оптике С, с. могут возникать в трёх- и четырёхчастотных параметрич. взаимодействиях (см. Взаимодействие световых волн), при генерации высших гармоник, в эффектах самовоздействия, комбинац. рассеянии, многофотонных процессах и т. п. Возможно также непосредств. создание высокостабильных лазерных источников излучения, в к-рых подавление квантовых флуктуаций осуществляется либо депрессией шумов накачки, либо введением отрицат. обратной связи.  [c.489]

Создание мощных источников радиоволн во всех диапазонах, а также появление квантовых генераторов, в частности лазеров, позволили достичь напряжённостей электрич. поля в Э. в., существенно изменяющих свойства сред, в к-рых происходит их распространение. Это привело к развитию нелинейвой теории Э. в. При распространении Э. в. в нелинейной среде (е и ц зависят от Е а Н) её форма изменяется. Если дисперсия мала, то по мере распространения Э. в. они обогащаются высшими гармониками и их форма постепенно искажается (см. Нелинейная оптика). Напр., после прохождения синусоидальной Э. в, характерного пути (величина к-рого определяется степенью нелинейности средь[) может сформироваться ударная волна, характеризующаяся резкими изменениями ЕлН (разрывами) с их последующим плавным возвращением к первонач. величинам. Большинство нелинейных сред, в к-рых Э. в. распространяются без сильного поглощения, обладает значит, дисперсией, препятствующей образованию ударных Э. в. Поэтому образование ударных волн возможно лишь в диапазоне X от неск. см до длинных волн. При наличии дисперсии в нелинейной среде возникающие высшие гармоники распространяются с разл. скоростью и существ. искажения формы исходной волны не происходит. Образование интенсивных гармоник и взаимодействие их с исходной волной может иметь место лишь при специально подобранных законах дисперсии.  [c.543]

Дан обзор современного состояния волновой оптики сверхкоротких импульсов. Особый акцент сделан на новых задачах, связанных с распространением предельно коротких импульсов. Изложены основы фурье-оптикн коротких волновых пакетов, распространяющихся в линейных диспергирующих средах. Рассмотрены нелинейные взаимодействия и самовоздействия фемтосекундных лазерных импульсов, компрессия фемтосекундных импульсов и возможности управления нх формой. Значительное внимание уделено физике формирования и взаимодействия оптических солитонов. Обсуждены основные тенденции развития фемтосекундных лазерных систем.  [c.2]

Общие идеи, лежащие в основе методов генерации сверхкоротких световых импульсов за счет фазировки компонент дискретного или сплошного спектра, пришли в оптику из радиофизики. Многомодовый лазер, в котором моды самосинхронизируются за счет взаимодействия в среде с нелинейным поглощением, является аналогом известного радиочастотного генератора коротких импульсов. Компрессия фазово-модулированных сигналов использовалась еще в 60-х годах для повышения пиковой мощности сигнала в радиолокационных системах. Возможности современной линейной и нелинейной оптической техники позволили реализовать эти принципы в гораздо большей мере, нежели это было сделано в радиотехнике.  [c.15]

Одним из интереснейших явлений в физике нелинейных волн является формирование устойчивых волновых пакетов, распространяющихся на значительные расстояния без изменения формы. Нелинейная оптика играет в последние годы все большую роль в солитонной физике. В нелинейно-оптических процессах можно указать по крайней мере три типа солитонов. Прежде всего это так называемые шрединге-ровские солитоны, где возникновение устойчивых импульсов связано с балансом действия дисперсии и нелинейности в прозрачной среде. Генерация солитонов возможна и в условиях, когда под влиянием световых импульсов возникает изменение разности населенностей среды — резонансные солитоны. В этом случае солитон формируется, если площадь импульса (интеграл по времени от огибающей) превышает пороговое значение, а длительность импульса меньше характерных времен релаксации. Наконец, оптические солитоны могут возникнуть в среде с квадратичной нелинейностью при взаимодействии волн с сильно различающимися частотами. Образование солитонов здесь связано с балансом эффектов группового запаздывания волн и нелинейного взаимодействия. Этот вид солитонов обсуждается в 3.4. В настоящем параграфе рассматриваются шредингеровские и резонансные солитоны.  [c.95]

Если вернуться к методической стороне дела, то большинство задач нелинейного взаимодействия пико- и фемтосекундных импульсов может быть решено на основе метода медленно меняюш,ихся амплитуд. Тем не менее здесь есть и исключения, представляюш,ие принципиальный интерес. При оптическом детектировании, генерации разностных частот возникают электромагнитные импульсы длительностью в один период оптических колебаний. Естественно, что их описание может основываться только на полном волновом уравнении. Заметим также, что в этой ситуации теряет смысл традиционное для нелинейной оптики разделение волновых явлений на самовоздействия и взаимодействия. Действительно, ширина спектра волнового пакета становится сравнимой с несуш,ей частотой и, следовательно, перекрывает интервал между центральными частотами взаимодействуюш,их импульсов. Один из примеров такой ситуации мы рассмотрим в 3.7.  [c.112]


В настоящее время бурное развитие переживает новое направление атмосферно-оптических исследований — нелинейная оптика атмосферы. Его актуальность обусловлена расширяющимся использованием лазерных источников с повышенной энергетикой в устройствах оптической связи, навигации, дальнометрирования и лазерного мониторинга окружающей среды, что приводит к качественному возрастанию потенциала указанных систем. Все это стимулирует потребность разработчиков в прогнозировании влияния нелинейных оптических эффектов в реальной атмосфере на точностные и энергетические характеристики проектируемых оптикоэлектронных систем и устройств. С другой стороны, открылись заманчивые перспективы использования специфического и весьма обширного класса нелинейных и когерентных взаимодействий в качестве физической основы методов лазерного зондирования тех из параметров атмосферы, которые не могут быть эффективно изме репы традиционными методами линейной оптики и другими известными методами.  [c.5]

В 70-е ГОДЫ в нелинейной оптике были реализованы методы самооб-ращения волнового фронта, когда сопряжение реализуется за счет нелинейного взаимодействия с интенсивной волной накачки. Как видно из предыдущих разделов, в резонансных взаимодействиях как квадратичного, так и кубичного типа часто реализуется операщ1я сопряжения, а следовательно, принщшиально возможны ОВФ или эффекты, близкие к нему,  [c.199]

Одновременно о термином нелинейная оптика в научную литературу былн введены термины линейная и нелинейная среда в соответствии о тем, можно ли при взаимодействии излучения  [c.135]

Самовращеиие эллипса поляризации. Эффект заключается в нзмене-нив поляризации излучения при его нелинейном взаимодействии со средой. Как известно, в рамках линейной оптики, т. е. при линейном взаимодействии излучения со средой, поляризация излучения остается неизменной (см., например, [3], 1.6).  [c.143]

При большой интенсивности свет нелинейно взаимодействует не только с атомами, ионами и молекулами, но и с конденсированными прозрачными средами — газами, жидкостями, кристаллами и т.д. Эти нелинейные процессы составляют нелинейную оптику [1.28]. Нелинейные процессы, возникающие на атомарном уровне, тесно связаны с нелинейными процессами, возникающими в конденсированных средах. Многофотонные матричные элементы, являющиеся основной характеристикой элементарного акта нелинейного взаимодействия интенсивного света с атомами, определяют такую усредненную характеристику взаимодействия с атомарным газом или конденсированной средой как нелинейная босприилтибость [1.29]. При взаимодействии интенсивного света с газом за счет нелинейной ионизации атомов (или молекул), составляющих газ, он превращается в плазму. Такая, так называемая лазерная плазма может быть образована и при взаимодействии лазерного излучения не только с газом, но и с другими конденсированными прозрачными и непрозрачными средами, в том числе, и с металлами. В одном импульсе мощного лазерного излучения конденсированная среда нагревается, испаряется, пары ионизуются и получается плазма. Это — одно из очень важных применений мощных лазеров [1.30].  [c.25]

В 1961 г. П. А. Франкен с сотрудниками открыли первый нелинейный эффект, в котором участвовали только волны оптических частот. Он заключается в получении второй гармоники. В этом эксперименте свет от рубинового лазера (длина волны 0,694 мкм) падал на кристалл кварца (фиг. 1), а позади кристалла обнаруживался свет удвоенной частоты измерения с соответствующими комбинациями фильтров позволили доказать, что этот свет действительно возникал в кристалле. Поскольку эти своеобразные взаимодействия вызвали общий интерес с точки зрения физики, а также в связи с перспективными возможностями применения нелинейной оптики, с 1961 г. эта область систематически исследовалась при постоянно возрастающих затратах. При  [c.27]


Смотреть страницы где упоминается термин Нелинейные взаимодействия в оптике : [c.577]    [c.22]    [c.832]    [c.153]    [c.316]    [c.529]    [c.576]    [c.664]    [c.9]    [c.32]    [c.84]    [c.143]    [c.26]    [c.29]    [c.303]    [c.417]   
Линейные и нелинейные волны (0) -- [ c.529 ]



ПОИСК



Нелинейное взаимодействие

Оптика нелинейная

Подход функций Грина в нелинейной оптике и взаимодействие волн различной пространственной конфигурации

Приближение геометрической оптики при взаимодействии неплоских волн в нелинейных оптических средах



© 2025 Mash-xxl.info Реклама на сайте