Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магнитная диффузия

Исследования по сушке влажных материалов в переменном магнитном поле подтверждают влияние переменного магнитного поля на перенос влаги. Однако еще не накоплено достаточного экспериментального материала, чтобы можно было рассчитать коэффициенты электрической и магнитной диффузии.  [c.440]

На дугу также оказывает влияние продольное магнитное поле соленоида, параллельное оси столба дуги и электрическому полю. Такое магнитное поле не оказывает никакого действия на заряженные части- у цы, движущиеся в направлении электрического поля, но на заряженные частицы, перемещающиеся в поперечном направлении этого поля, оно оказывает заметное влияние. Так как температура центральной части столба дуги выше периферийной, то диффузия частиц начинается в направлении меньшей температуры по радиусу.  [c.13]


Продольное поле. При наложении продольного поля направления магнитного и электрического полей совпадают, поэтому на дрейфовое движение заряженных частиц магнитное поле влиять не будет. Однако электроны и ионы обладают еще тепловой скоростью хаотического движения и скоростью амбиполярной диффузии.  [c.84]

Для успешного решения все возрастающего числа нерешенных вопросов, связанных с подвижностью атомов, необходимо более широкое изучение процессов диффузии не только в обычных условиях, но также и в условиях, связанных с различными внешними воздействиями — облучение потоками заряженных частиц, наличие внешних электрических и магнитных полей и др. Полученная в процессе такого изучения новая информация окажет неоценимую помощь при решении многих проблем физики твердого тела.  [c.208]

При малых числах Re имеет место так называемый случай диффузии (затухания) магнитного поля, при этом оно практически не зависит от движения жидкости. Условие диффузии магнитного поля может быть легко получено из уравнения индукции в предположении Re 1 в виде  [c.409]

Из уравнения (XV.41) следует, что в покоящейся среде магнитное поле со временем будет затухать, т. е. оно будет просачиваться сквозь вещество от точки к точке. Скорость просачивания, или скорость выравнивания магнитного поля, отнесенная к единице площади, определяется коэффициентом v . По аналогии с молекулярной диффузией он может быть назван коэффициентом диффузии магнитного поля или коэффициентом переноса магнитной субстанции. Из уравнения (XV.41) видно, что время затухания поля имеет следующий порядок t —  [c.409]

Это связано с тем, что движение протона в Галактике напоминает диффузию частицы в хаотично ориентированных магнитных полях.  [c.639]

Анизотропия кристаллов проявляется в их упругих и пластических свойствах, теплопроводности и электросопротивлении, магнитных свойствах, скорости диффузии, коррозии и др.  [c.27]

П. п. в полностью ионизованной плазме в однородном магнитном поле. Неоднородная плазма разлетается вдоль В со скоростью ионно-звуковых волн -vw -j- 7 i)/m , поэтому не существует диффузии простой, полностью ионизованной плазмы вдоль В, реализуется только диффузия поперёк поля, определяемая электронами Di = Подвижно-  [c.570]

С.-с. в. играет важную роль в динамике многочастичных спиновых систем. Оно приводит к взаимным переворотам взаимодействующих спинов (электронных либо ядерных), что обеспечивает процессы поперечной релаксации магнитной, спиновой диффузии и ведёт к установлению спиновой температуры в парамагн. твёрдых телах. С.-с. в. между электронами  [c.646]


Кроме Т. д. перенос энергии в плазме может быть связан с неоднородностью удерживающего плазму магн. ноля, т. к. в этом случае часть запертых частиц плазмы (см. Магнитные ловушки) может двигаться кроме мелкомасштабного ларморовского вращения по крупномасштабным замкнутым дрейфовым орбитам. В токамаках такие орбиты наз. бананами, а связанная с ними диффузия — банановой или неоклассической. В экспериментах на тока-  [c.177]

Очень эффективным катализатором конверсии является мелкий порошок гидрата окиси железа, хотя также эффективны юкислы других магнитных элементов, такие, как окись хрома, окиси железоникелевых сплавов. На практике значительные трудности вызывает требование полного отсутствия катализатора в опытах, где требуется совершенно неконвертированный нормальный водород. Наиболее эффективно в качестве катализатора использование гидрата окиси железа при его непосредственном контакте с жидким водородом. Скорость диффузии  [c.154]

Это уравнение называют логарифмическим. Соответственно, график, построенный в координатах у — g t + onst) или у — — Ig t (при t > onst) имеет вид прямой линии. Логарифмическое уравнение, впервые полученное Тамманном и Кестером [11], отражает поведение многих металлов (Си, Fe, Zn, Ni, Pb, d, Sn, Mn, Al, Ti, Та) на начальных стадиях окисления. Вначале справедливость этого уравнения ставилась под сомнение. Были сделаны попытки вывести уравнения на основе предположений о существовании специфических свойств оксидов, таких как наличие диффузионных барьеров и градиентов ионной концентрации и других. Эти предположения не получили экспериментального подтверждения. С другой стороны, было показано, что логарифмическое уравнение можно вывести из условия, 4TQ скорость окисления контролируется переходом электронов из металла в пленку продуктов реакции, причем эта пленка имеет пространственный электрический заряд во всем своем объеме (7, 12]. Преобладание заряда, обычно отрицательного, в оксидах вблизи поверхности металла, подобно электрическому двойному слою в электролитах, было установлено экспериментально. Таким образом, любой фактор, изменяющий работу выхода электрона (энергию, необходимую для удаления электрона из металла), например ориентация зерен, изменения кристаллической решетки или магнитные превращения (точка Кюри), изменяет скорость окисления, что и наблюдалось в действительности [13—15. Когда толщина пленки превышает толщину пространственно-заряженного слоя, определяющим фактором обычно становится скорость диффузии или миграции сквозь пленку. При этом начинает выполняться параболический закон, и ориентация зерен или точка Кюри перестают оказывать влияние на скорость окисления. Исходя из этого, можно сказать, что в начальной стадии оксидная пленка на металлах  [c.193]

В обычных сварочных дугах при атмосферном давлении наибольшее влияние продольное магнитное поле оказывает на диффузионную составляющую скорости ионов и электронов. Скорость диффузии их направлена по радиусу от центра дуги к периферии, где температура и концентрация меньше (рис. 2,39). В связи с тем что скорости диффузии в квазинейтральном столбе дуги равны Ve Vi, а масса те< .гт, импульсы, передаваемые нейтральным частицам от ионов, будут в тысячи раз больше, чем от электронов. Поэтому плазма столба дуги придет во вращательное движение, соответствующее движению в магнитном поле ионов. Столб дуги будет вращаться против часовой стрелки.  [c.84]

Таким образом, при температурах полной ионизации плазмы Т = 100 000 К, плотность энергии излучения в ней становится преобладающей. Это приводит к трудностям адиабатной изоляции плазмы при температурах термоядерных реакций (Т 1 ООО 000° К). Если интенсивность излучения абсолютно черного тела определяется однозначно его температурой (закон Стефана—Больцмана), то плазма термически равновесна. Но плазма в редких случаях излучает как черное тело и лучистое равновесие нарушается из-за наличия холодных стенок. Стенки не только поглош,ают лучистую энергию, но н оказывают каталитическое и электрическое воздействие на процессы в плазме. Наличие градиента температуры у стенок вызывает концентрационную диффузию и местное равновесие может восстановиться лишь тогда, когда скорость реакции велика по сравнению со скоростью диффузии. И, наконец, нерав-новесность может быть вызвана и наличием магнитно-гидродинамических эффектов, обусловленных наличием заряженных частиц.  [c.233]


Вмороженность и диффузия магнитного поля. Для больших чисел Re , т. е. когда проводимость жидкости велика или велики линейные размеры поля течения, имеет место так называемое вмороженное магнитное поле. В этом случае вторым членом в левой части (XV. 17) можно пренебречь и записать его в виде  [c.408]

Омагничивание агрессивных растворов проводили на установке простой конструкции, схема которой представлена на рис. 45. От источника УИП-1 подавали постоянный ток силой до 600 мА на однополюсный магнит. Напряженность магнитного поля увеличивалась до 80 х X Ю А/м. Жидкость при помощи центробежного насоса постоянной производительности циркулировала по стеклянной трубке, установленной перпендикулярно к силовым линиям магнитного поля. Для изменения скорости потока использовали трубки различного диаметра. Время пребывания сероводородсодержащего раствора в магнитном поле составляло 0,1 с при общем времени омагничивания 30 мин. В растворе содержалось 2500-2700 мг/п H S. Диффузию водорода через мембрану из стали марки 12Х1МФ определяли электрохимически по спаду потенциала запассивированной стороны мембраны.  [c.191]

Теория направленного упорядочения возникла в связи с исследованиями явления временного спада проницаемости, объясняемого наличием в твердом растворе атомов внедрения. Если большинство атомов внедрения будет расположено в междуузлиях вдоль одной определенной оси, например 1100], то возникнет одноосная анизотропия. В любом твердом растворе, который неполностью упорядочен, имеется совокупность пар одинаковых атомов. Эти пары атомов выстраиваются вдоль приложенного магнитного поля. Необходимо показать, что энергии внешнего магнитного поля достаточно для того, чтобы создать направленное упорядочение, а в том случае, если направленное упорядочение уже возникло, то оно может объяснить величину наблюдаемой магнитной анизотропии. Теоретически и экспериментально было показано, что каждая пара атомов обладает энергией, зависящей от угла между локальной намагниченностью и осью пары. При температурах ниже температуры Кюри, но достаточных для того, чтобы диффузия успевала проходить за конечный промежуток времени,, пары одинако-  [c.155]

Диффузионная длина — это расстояние, на котором в однородном полупроводнике при одномерной диффузии в отсутствие электрического и магнитного полей избыточная концентрация неравновесных носителей заряда уменьшается вследствие рекомби-  [c.248]

Структурная модель, базирующаяся на представлениях о неравновесных границах зерен и предложенная в работах [12, 207], может быть использована для объяснения и других свойств наноструктурных материалов, по крайней мере, в качественном аспекте. Увеличение объема материала, вызванное дефектами, должно приводить к уменьшению температуры Дебая и упругих модулей. Поскольку обменная энергия в магнитных материалах очень чувствительна к межатомным расстояниям, это может вызвать уменьще-ние температуры Кюри. Как уже указывалось ранее [83], случайные статические смещения атомов могут влиять на свойства аналогично увеличению температуры. Например, это может вызвать уменьщение энергии активации диффузии, экспериментально наблюдаемое во многих наноструктурных металлах [61, 218], что также может быть объяснено в рамках данных представлений.  [c.112]

На рис. 1 показано изменение максимальной магнитной проницаемости в зависимости от температуры испытания. В то время как у ферритных сплавов Si—Fe и Со—Fe не наблюдается значительного влияния температуры, у аус-тенитных сплавов Ni—Fe, наоборот, отмечается выраженная температурная зависимость максимальной магнитной проницаемости. Поведение железа связано с хорошо известным эффектом диффузии (магнитное последействие), вы-  [c.355]

Даже после того, как были даны пояснения по поводу многих внешних источников демпфирования, все еще остается очень большое число механизмов, с помощью которых энергия при колебаниях может поглощаться внутри некоторого малого элемента материала при его циклическом демпфировании. Мы не станем пытаться объяснить все эти механизмы, а остановимся на некоторых из них, представляющихся наиболее существенными. Эти механизмы приведены в табл. 2.1 [2.14] для тех диапазонов частот и температур, в которых они, как правило, наиболее эффективны. Все рассмотренные здесь маханизмы связаны с внутренними перестройками микро- или макроструктур, охватывающими диапазон от кристаллических решеток до эффектов молекулярного уровня. Сюда входят магнитные эффекты магнитоупругий и магнитомеханический гистерезис), температурные эффекты (термоупругие явления, теплопроводность, температурная диффузия, тепловые потоки) и перестройка атомарной структуры (дислокации, локальные дефекты кристаллических решеток, фотоэлектрические эффекты, релаксация напряжений на границах зерен, фазовые процессы, учитываемые в механике твердого деформируемого тела, блоки в по-ликристаллических материалах и т. п.) [2.15—2.18].  [c.77]

Физические свойства К. Все свойства К.— механические, электрические, магнитные, оптические, электро- II магнитооптические, транспортные (напр., диффузия, тепло- и электропроводность) и др.— обусловлены атомно-кристаллич, структурой, её симметрией, силами связи между атомами и энергетич. спектром электронов решётки, а нек-рые из свойств — дефектами структуры. Поляризуемость К., оп-тич. преломление и поглощепио, электро- и магиптострикция, вращение плоскости поляризации (ги-рация), пьезоэлектричество и пьезо-магнетизм, собств. проводимость характеризуются тензорами, ранг к-рых зависит от типа воздействия на К. и его отклика. Напр., напряжённость электрич. поля с компо-  [c.520]

Оитпч., электрич., магнитные, гальваномагиитиые и др. свойства К. диэлектриков, полупроводников и металлов связаны с зонным характером электронного эпергетич, спектра (см. Зонная теория) и колебаниями кристаллич. решётки (см. Динамика кристаллической решётки). Особыми свойствами квантовой диффузии обладают квантовые крист.аллы Не.  [c.521]


Применение метода МСР. Исследования можно разделить на 2 группы изучение явлений, где анализируется поведение в веществе самого положит, мюона р+, рассматриваемого как лёгкий протон изучение проблем, где р рассматривается как простейший зонд в исследуемом веществе, сочетающий свойства пробного заряда и элементарного магнитометра. Часто в одном эксперименте оба аспекта тесно переплетаются. Примеры исследований 1-й группы — эксперименты по изучению электронной структуры мюония в полупроводниках и диффузии мюонов в металлах. Эти эксперименты дополняют исследования поведения водорода в материалах, позволяя получать наглядную картину процессов, в к-рых проявляется квантовая природа поведения лёгкой примесной частицы в тяжёлой кристаллич. решётке. Примерами исследований 2-й группы может служить изучение смешанного состояния сверхпроводников 2-го рода и фазовых переходов с изменением магн. порядка (см. Магнитный фазовый переход).  [c.226]

Магн. поле тока отжимает плазменный кана.т от стенок разрядной камеры, и образуется изолиров. токовый шнур — пинч. Само магн. поле сосредоточено в пристеночном вакуумном зазоре между пинчем и стенкой, тем самым создаются условия для магн. термоизоляции высокотемпературной плазмы. Линии магн. поля параллельны поверхности пинча, и вылетающие из плазмы заряж. частицы движутся поперёк магн. поля, процесс диффузии плазмы (и перенос тепла) на стенку существенно замедляется характерная длина — свободный пробег частиц Я заменяется на ларморовский радиус р = ети1В, к-рый, в зависимости от величины магнитного поля В, меньше Я на несколько порядков величины.  [c.587]

Характерными признаками магнитного фазового перехода в состояние С. с. в пост. внеш. магн. иоле Н являются возникновение при T>Tf и малых Я намагниченности m и её рост при понижении темп-ры вплоть до Г/ наличие при Г = Tf резкого излома (быстро сглаживающегося с ростом Н) статнч. магн. восприимчивости X = дМ)дН (рис.), линейный ход магн. составляющей теплоёмкости С при низких Т и отсутствие особенности С при Т = Tf отсутствие брэгговских пиков в магнитном рассеянии нейтронов, критич. аамедлепие спиновой диффузии и др. При наблюдении перехода в фазу С. с. в переменном внеш. магн. поле с частотой со обнаруживается ряд необычных для др. магн. фаз явлений частотная зависимость (дисперсия) темп-ры замерзания Т , появление мнимой части динамич. вос-цриимчивости наличие долговременной (лога-  [c.634]

Т. п. в магнитных ловушках диффузия плазмы из центр, областей ловушек на периферию вращение плазмы в ловушках и плазменных центрифугах уход плазмы в пробки открытых. магнитных ловушек течение в волноводах плазлгениых течения в окрестности диверторных слоев формирование плазменных сгустков в виде компактных торов.  [c.112]


Смотреть страницы где упоминается термин Магнитная диффузия : [c.356]    [c.272]    [c.331]    [c.196]    [c.737]    [c.408]    [c.7]    [c.331]    [c.358]    [c.63]    [c.238]    [c.290]    [c.374]    [c.469]    [c.591]    [c.651]    [c.117]    [c.632]    [c.634]    [c.651]    [c.93]    [c.6]   
Механика электромагнитных сплошных сред (1991) -- [ c.272 ]



ПОИСК



Диффузия

Диффузия в тороидальных магнитных ловушках



© 2025 Mash-xxl.info Реклама на сайте