Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Соединения лопаток и дисков компрессоров и турбин

Настоящая глава содержит сведения о процессе резания при протягивании жаропрочных и титановых материалов. Протягивание применяется при изготовлении замковых соединений лопаток и дисков турбин и осевых компрессоров турбореактивных двигателей. Для замка лопаток и пазов в дисках характерна сложность профиля, а для их обработки — высокие требования в отношении  [c.339]

Для износа протяжек, используемых при обработке сопрягаемых поверхностей замкового соединения лопаток и дисков газовых турбин и компрессоров, характерны три периода. В начале резания износ нарастает интенсивно, достигая к концу первого периода величины /г 0,10 мм. В течение второго периода износ нарастает значительно медленнее, причем в конце периода.истирание по задним поверхностям составляет /1 0,15 0,18 мм.  [c.369]


На практике диски компрессоров и турбин имеют сложную форму, которая определяется общей компоновкой ротора двигателя, способами соединения дисков с валом и между собой, технологичностью конструкции и другими причинами. Для турбинных дисков большое значение имеет характер распределения температур вдоль радиуса диска, который зависит от условий его работы, способа охлаждения турбинных дисков и лопаток. С этим непосредственно связаны свойства материалов дисков — зависимость их модуля упругости, коэффициентов линейного расширения от температур.  [c.302]

Лопатки компрессоров и турбин работают в сложных силовых и температурных условиях и относятся к числу наиболее ответственных деталей газотурбинного двигателя. Соединяются лопатки с дисками с помощью замков различных конструкций, из которых наиболее распространены елочные замки для лопаток турбин, соединения типа ласточкин хвост и штифтовые для компрессорных лопаток.  [c.97]

Замковые соединения лопаток. Для закрепления рабочих лопаток в дисках осевых компрессоров, паровых и газовых турбин используют замки различных конструкций (елочный замок, замок типа ласточкин хвост и т. п.).  [c.562]

Турбинные корпусы типовых турбокомпрессоров отлиты из чугуна и имеют полости для циркуляции охлаждающей воды. Корпус компрессора отливают из алюминиевого снлава. Лопатки сопловых аппаратов изготовляют из листовой хромистой стали п заливают их в чугунные внутренний и наружные ободья. В некоторых моделях используют профилированные лопатки, отливаемые заодно с ободом по выплавляемым моделям. У низко-напорных турбокомпрессоров стальной турбинный диск откован заодно с валом. Рабочее колесо компрессора закрытое, с загнутыми назад лопатками, приклепанными к дискам. В турбокомпрессорах повышенной напорности вал ротора обычно сварной, а колесо компрессора полуоткрытое с радиальными лопатками (фиг. 51, б). Турбинные лопатки (в том числе и изготовленные из никелевых сплавов) фрезеруют и соединяют с турбинным диском сваркой. Для крупных моделей применяют соединение лопаток и диска с помощью замка Лаваля или елочного замка. Диски турбин небольших размеров отливают (по выплавляемым  [c.68]

Станки, приспособления, режущий и мерительный инструмент, применяемые при протягивании замковых соединений лопаток и дисков газовых турбин и осевых компрессоров турбореактивных двигателей, описаны в трудах Н. Ф. Пронкина [109] и др. Там же имеются сведения по фрезерованию замковых соединений.  [c.342]


Разработана [154] электродинамическая установка длк испытания на усталость лопаток турбин и компрессоров в условиях высоких температур. Частота нагружения от 200 до 3000 Гц, температура испытания до 1200°С. Испытания на усталость замковых соединений лопаток турбин и компрессоров проводят при совместном действии статического растяжения и переменного изгиба на машине резонансного типа [50]. Установка УЛ-(1 предназначена для исследования усталостной прочности лопаток и образцов в резонансном режиме [3]. Разновидностью электромагнитной установки для испытания лопаток является выпускаемая в ЧССР машина Турбо . Лопатки турбомашин испытывают на резонансных частотах Возбуждение колебаний лопаток может осуществляться пульсирующей воздушной струей [50]. Создана многообразцовая электромагнитная машина для испытания на усталость лопаток при одновременном статическом растяжении в условиях высоких температур и специальных сред, а также установка для испытания на усталость диска турбины с укрепленными на нем лопатками с электродинамическим возбудителем колебаний. Имеются установки для испытания лопаток и образцов при растяжении и изгибных колебаниях, а также на термическую уста-лость .  [c.226]

Контактное усталостное выкрашивание с последующим развитием усталостного разрушения по сечению детали наблюдается в таких деталях, как подшипники качения и скольжения, на зубьях шестерен, в кулачковых шайбах, ушковых и замковых соединениях и пр. Одним из сложных по условиям работы узлов является замковое соединение лопаток с дисками в различных компрессорах и турбинах. Наблюдения показывают, что процессы коррозии трения существенно влияют на эксплуатационные повреждения и разрушения этих узлов. Коррозия трения зависит от многих факторов, в том числе конструктивных вида сопряжения выступа диска с замком лопатки, угла наклона контактной границы хвостовика лопатки, величины статической нагруа-ки и пр. [65, 66].  [c.140]

Ротор 2 компрессора высокого давления (КВД) — барабанного типа, цельнокованый, с пазами под хвостовики рабочих лопаток, выточенными в окружном направлении. К ротору через кольцевую проставку двенадцатью стяжными болтами крепятся три диска 16 ТВД. Рабочие лопатки турбины удерживаются в дисках благодаря двухзубчатому елочному хвостовику. Аналогично осуществляется крепление лопаток на диске и соединение пяти дисков 14 ТНД в единую конструкцию.  [c.197]

Турбокомпрессор высокого давления (ТКВД) состоит из 12-ступенчатого осевого компрессора и двухступенчатой осевой турбины. Диск турбины с двумя рядами рабочих лопаток консольно закреплен на роторе компрессора с помощью болтов и щлицевого соединения. Ротор компрессора барабанного типа вращается в двух подшипниках скольжения, осевое усилие воспринимает упорный подшипник с уравнительным устройством. Корпус компрессора литой, стальной, имеет горизонтальный и вертикальный (технологический) разъемы.  [c.79]

Рис. 8.17. При развитии однотипных газотурбинных двигателей с центробежными компрессорами Уделялось большое внимание конструированию елочных замков соединения лопаток турбин с дисками. Изменения нагрузок, рабочих температур, применяемых материалов, ресурса работы двигателей и т. д. требовало упрочнения замков. Прочность соединения во многом зависела от точности изготовления элементов замка, чистоты обработки поверхностей и, особенно, от величины радиуса скругления во впадинах между выступами. Так, при переходе от двигателя РД-45 (рис. 8.17, а) к двигателю ВК-1 (рис. 8.17, б) в диске была изменена форма паза под зуб и увеличен радиус скругления во впадине. При выбранных размерах пазов размещение галтели с радиусом г=0,7 о,1 привело к расположению плоскостей контакта под уголрм 90 —V к оси 0—0. Размеры элементов пазов елочных замков дисков турбин даны в таблице. Рис. 8.17. При развитии однотипных <a href="/info/26479">газотурбинных двигателей</a> с <a href="/info/30658">центробежными компрессорами</a> Уделялось большое внимание конструированию елочных замков соединения лопаток турбин с дисками. Изменения нагрузок, <a href="/info/108412">рабочих температур</a>, применяемых материалов, <a href="/info/134224">ресурса работы</a> двигателей и т. д. требовало упрочнения замков. <a href="/info/268192">Прочность соединения</a> во многом зависела от <a href="/info/8537">точности изготовления</a> элементов замка, <a href="/info/140273">чистоты обработки поверхностей</a> и, особенно, от величины радиуса скругления во впадинах между выступами. Так, при переходе от двигателя РД-45 (рис. 8.17, а) к двигателю ВК-1 (рис. 8.17, б) в диске была изменена форма паза под зуб и увеличен радиус скругления во впадине. При выбранных размерах пазов размещение галтели с радиусом г=0,7 о,1 привело к <a href="/info/100843">расположению плоскостей</a> контакта под уголрм 90 —V к оси 0—0. Размеры элементов пазов елочных замков <a href="/info/101285">дисков турбин</a> даны в таблице.

Углепластик Хайфил , разработанный фирмой Роле Ройс (Англия) на основе угольных волокон и эпоксидных смол и применяемый для изготовления турбинных лопаток, дисков, ротора и статора компрессора, а также вентилятора, позволяет уменьшить массу некоторых конструкций двигателей компрессора на 35 /о [183, 185]. Как указывается в работе [224], создан материал Карб-и-текс, состоящий из углеграфитовых волокон, соединенных между собой углеродной или графитовой матрицей. Этот материал, способный выдерживать температуру выше 3000° С, предназначен для изготовления ракетных сопел, передних кромок крыльев, конструкций, подвергаемых абляции, высокотемпературных подшипников, тормозных дисков, прессформ, работающих при повышенных температурах. Весьма перспективным является использование угольных волокон в конструкциях турбогенераторов в этом случае мощность их может быть увеличена до 1300 Мет [225]. При изготовлении крышки турбогенератора с обмоткой из угольных волокон масса может быть снижена в 6 раз.  [c.125]

Вал ротора 10 изготовлен из низколегированной стали. На него насажено колесо компрессора 15, имеющее девятнадцать радиальных лопаток и рабочее колесо 6 осевой турбины. Колесо компрессора (алюминиевый сплав) изготовляется совместно сВНА из штампованной заготовки механической обработкой. Диск турбпны и рабочие лопатки изготовляются из аустенитной стали. У турбокомпрессора серии 10 ротор состоит из четырех основных частей стального колеса компрессора, двух полувалов, соединенных с ним болтами, и диска турбины, насаженного на длинный полувал. Такая конструкция ротора продиктована требованиями прочности и объясняется тем, что при высокой степени повышения давления (порядка я, яа 3) трудно было бы обеспечить приемлемые напряжения в ступице колеса при насадке его па вал для обеспечения необходимой жесткости вала диаметр  [c.49]

Топливный компрессор имеет 15 ступеней. Для предотвращения утечек колошникового газа в помещение, к лабиринтовому уплотнению компрессора подается пар. Расход газа равен 19 кг сек, давление при всасывании 1,0 ama, максимальная степень повышения давления 5,3, скорость вращения вала 8700 об1мин. Корпус компрессора имеет горизонтальную плоскость разъема. На направляющих лопатках установлен бандаж для обеспечения жесткости. Дисковый ротор сделан из углеродистой стали с высоким сопротивлением разрыву. Диски насаживаются на жесткий вал. Лопатки крепятся в осевые пазы типа ласточкиного хвоста . Такое крепление позволяет производить замену отдельных лопаток. Осевое усилие, действующее на ротор компрессора, уравновешивается специальным поршнем. Утечки газа через уплотнения этого поршня отводятся во всасывающий патрубок компрессора. Компрессор соединен гибким относительно длинным валом с редуктором. Шевронный редуктор увеличивает екорость вращения вала с 3600 до 8700 об мин. На ведущем валу редуктора имеется шестерня для привода масляного насоса и регуляторов. С этой же шестерней сцепляется шестерня пусковой турбины и валопово-ротного устройства. Пусковая турбина имеет пневматическую фрикционную муфту, которая  [c.124]


Смотреть страницы где упоминается термин Соединения лопаток и дисков компрессоров и турбин : [c.144]   
Конструкция и проектирование авиационных газотурбинных двигателей (1989) -- [ c.73 , c.77 , c.145 ]



ПОИСК



Диски компрессора

Диски турбин

Диски турбинные

Компрессорий

Компрессоры

Лопатка

Лопатки компрессора

Соединения лопаток с дисками

Турбина диски

Турбинные лопатки

Турбины — Лопатки —



© 2025 Mash-xxl.info Реклама на сайте