Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент отражения металла

Коэффициенты отражения металлов при нормальном падении луча лазера (комнатная температура) [236]  [c.109]

В обычной практике знание коэффициентов отражения металлов является весьма важным во всем, что касается инфракрасных лучей [Л. 152].  [c.80]

Коэффициент отражения металлов, выраженный в процентах, как правило, возрастает с увеличением длины волны и приближается асимптотически к 100%.  [c.80]

Металл Коэффициент отражения, % Металл Коэффициент отражения, %  [c.371]

Подобные эффекты, состоящие в изменении оптических свойств нагретой поверхности при протекании химических реакций, давно изучаются в лазерной термохимии [4.26]. Химические превращения на поверхности существенно затрудняют проведение лазерной термометрии. В частности, при образовании прозрачной пленки на непрозрачной подложке измерение температуры возможно лишь тогда, когда толщина пленки удовлетворяет неравенству h Л/4п. В противном случае коэффициент отражения металла изменяется за счет интерференции в пленке существенно сильнее, чем за счет изменения температуры. Если условие h /Ап не выполняется, возможен переход к более длинноволновому зондированию.  [c.101]


Постоянные б и л, а вместе с ними и коэффициенты отражения металлов зависят от длины волны. Эта зависимость в области от 0,2 до 0,7 мкм показана на рис. 3-12 для не-  [c.82]

Рис. 3-12. Коэффициенты отражения металлов в видимых и ультрафиолетовых лучах. Рис. 3-12. Коэффициенты отражения металлов в видимых и ультрафиолетовых лучах.
Коэффициенты отражения металлов в инфракрасных лучах при нормальном падении  [c.83]

Коэффициент отражения металла 281  [c.610]

В свою очередь, как показывает стандартный расчет теории электромагнетизма (приложение Л), коэффициент отражения металла определяется его проводимостью, зависящей от частоты. Подстановка выражения (1.29) для свободных электронов в формулу (Л. 6) дает коэффициент отражения, в который из всех характеристик конкретного металла входят лишь его плазменная частота и (электронное) время релаксации. Поэтому структура коэффициента отражения, получаемого в модели свободных электронов, недостаточно сложна, чтобы объяснить характерные пороги в наблюдаемых коэффициентах отражения реальных металлов она не объясняет также, почему эти коэффициенты столь сильно меняются при переходе от одного металла к другому.  [c.293]

Значительно увеличивает поглощательную способность материала вследствие создания на его поверхности оксидов, имеющих меньший коэффициент отражения по сравнению с основным металлом.  [c.128]

Для того чтобы наиболее просто проиллюстрировать методику определения коэффициента отражения R, воспользуемся соотношениями, справедливыми при малых углах падения. Для нормального падения плоской волны из вакуума на поверхность диэлектрика было получено ю/-Еоо = п — 1)/(п + 1). Следовательно, для отражения от металла под углом ф, близким к нулю при замене п на п = п — inx находим соотношение  [c.103]

В хороших приборах поверхность пластинок делают плоской с точностью до 1/200 длины волны. Внутренние поверхности пластинок (между которыми заключается слой воздуха) серебрят или покрывают каким-либо другим металлом с целью обеспечить достаточно высокий коэффициент отражения лучей. Интерференционная картина получается в виде колец равного наклона (рис. 7.5), ибо на эталон направляют расходящийся пучок света от широкого источника (на рис. 7.4 представлен ход одного из лучей этого пучка). Порядок интерференции определяется расстоянием между пластинками (от 1 до 100 мм, в специальных эталонах — значительно больше, до 1 м). В соответствии с этим наблюдаемые порядки интерференции очень высоки. При = 5 мм /и 20 000.  [c.139]


Резкость интерференционной картины будет тем значительнее, чем больше коэффициент отражения от металлического слоя (рис. 7.6). Значение = 0,04 соответствует поверхности стекла, не покрытой металлом. При современных способах металлического покрытия коэффициент отражения удается довести до / = 0,90 —  [c.139]

При сравнительно небольших частотах (инфракрасные лучи) оптические свойства металла обусловливаются главным образом поведением свободных электронов. Но при переходе к видимому и ультрафиолетовому свету начинают играть заметную роль связанные электроны, характеризующиеся собственной частотой, лежащей в области более коротких длин волн. Участие этих электронов обусловливает, так сказать, неметаллические оптические свойства металла. Так, например, серебро, которое в видимой области характеризуется очень большим коэффициентом отражения (свыше 95%) и заметным поглощением, т. е. типичными оптическими особенностями металла, в области ультрафиолета обладает резко выраженной областью плохого отражения и большой прозрачности вблизи X = 316 нм отражательная способность серебра падает до 4,2%, т. е. соответствует отражению от стекла. Ниже приведены коэффициенты отражения серебра (в процентах) для разных длин волн при нормальном падении  [c.490]

Для простого случая нормального падения на металл нетрудно вычислить как разность фаз между , и Ei, так и коэффициент отражения. Для этого в выражении — Гц= — (д — 1)/(д + 1) надо заменить д на д = д(1 — ix), т. е.  [c.492]

Согласно (141.4) измерение коэффициента отражения по интенсивности металла также можно использовать для определения оптических постоянных металла.  [c.493]

Металлические твердые тела в отличие от других типов твердых тел, обладают рядом интересных особенностей. К этим особенностям следует отнести высокую электропроводность, металлический блеск, связанный с большими коэффициентами отражения электромагнитных волн, высокую пластичность (ковкость) и др. Удельная электропроводность металлов при комнатных температурах составляет 10 —10 Ом -м-, тогда как типичные неметаллы, например кварц, проводят электрический ток примерно в 10 раз хул е типичного металла серебра. Для металлов характерно возрастание электропроводности с понижением температуры. Из 103 элементов таблицы Менделеева 19 не являются металлами.  [c.82]

Соотношение между величинами потоков отраженной и поглощенной энергии должно зависеть от электропроводности металла. Опыт показывает, что чем больше электропроводность металла, тем выше его отражающая способность (например, благородные и щелочные металлы являются хорошими отражателями). Металлы с худшей электропроводностью (например, железо) имеют более низкий коэффициент отражения.  [c.25]

Коэффициент отражения и разность фаз б нетрудно вычислить для случая почти нормального падения плоской волны на поверхность металла ). Для этого в выражении (16,26) надо заменить П на п ( 2=1). т. е.  [c.28]

Коэффициент отражения К проявляет зависимость от коэффициента поглощения а, т. е. с ростом поглощения растет и отражение. Этим объясняется сильное отражение света металлами. Следовательно, если в некотором спектральном интервале вещество сильно поглощает свет, то оно в-этом же интервале сильно отражает его. Но отражение су-  [c.156]

Оптический метод основан на измерении уступа, образованного краем покрытия с основным металлом, способом светового сечения или растровым способом с помощью оптического микроскопа. Метод применим для измерения толщины покрытия от 1 до 40 мкм с коэффициентом отражения не менее 0,3. Уступ получают растворением небольшого участка покрытия с предварительной изоляцией остальной части поверхности.  [c.55]

В общем случае коэффициент отражения от зеркальной поверхности диэлектрика описывается формулами Френеля. При анализе отражения от поверхности металлов необходимо учитывать комплексный характер этого коэффициента, обусловленный большой поглощательной способностью металлов.  [c.50]


При вводе УЗК со стороны металла выявляемость дефектов улучшается с увеличением коэффициента отражения от поверхности ввода УЗК и уменьшением коэффициента отражения от внутренней границы металла. Значение можно увеличить применением преобразователя с полуволновым пьезоэлементом без демпфера, входной импеданс которого на резонансной частоте Zbx О- Радикальным способом повышения / является использование бесконтактных (например, ЭМА) преобразователей. Значение / ин уменьшается с увеличением отношения характеристических импедансов пластика 2пл и металла Zn,. Наиболее четко выявляются дефекты типа нарушения адгезии клея к металлу, когда Ь  [c.305]

В советской промышленности методом гальваностегии наносится более стойкий слой (например, хрома) на трущиеся поверхности другого металла, чем повышается срок службы основной детали. Гальваностегия позволяет создавать идеальные поверхности для отражения лучей, что достигается нанесением тонкого слоя таких металлов, как серебро, радий, хром, обладающих высоким коэффициентом отражения.  [c.19]

Очень эффективен метод гальваностегии, с помощью которого наносится на черные металлы более стойкий к окислению слой другого металла. Этим же методом на трущиеся поверхности другого металла, например, валы или оси машин, наносится более твердый материал, что повышает срок службы основной детали. Гальваностегия позволяет создавать идеальные поверхности на установки, от которых должны отражаться лучи света, например, на отражатели прожекторов. Это достигается нанесением тонкого слоя таких металлов, как серебро, хром, обладающих высоким коэффициентом отражения.  [c.34]

При использовании различных типов лазеров для обработки излучением следует учитывать, что коэффициент отражения материала, а следовательно, и доля поглощенной световой энергии зависят от длины волны лазерного излучения чем короче длина волны излучения ОКГ, тем ниже отражательная способность металла и выше доля поглощенной световой энергии. Из табл. 1 следует, что большинство металлов плохо поглощают излучение СОз-лазеров, имеющее длину волны 10,6 мкм.  [c.7]

Операция механической полировки заключается в удалении малейших неровностей с поверхности металла с целью придания обрабатываемой поверхности блестящего, зеркального вида с высоким коэффициентом отражения света.  [c.121]

Температура нагрева в месте воздействия лазерным лучом существенно зависит от коэффициента отражения материала. Для металлов в диапазоне длин волн лазеров, выпускаемых промышленностью, коэффициенты отражения приведены в табл. 12.  [c.109]

Большинство отмеченных особенностей дифрагированного поля наблюдается на опыте. Однако при детальном сравнении теоретических данных с экспериментом следуетучитывать, что они 1юлучены для решетки с бесконечной проводимостью, и поэтому могут быть непосредственно применены при длинах волн, где коэффициент отражения металла, на котором изготовлена решетка, достаточно близок к едннице. Для хорошо отражающих металлов, таких, как алюминий, золото или серебро, эти результаты будут справедливы вплоть до средней и дальней инфракрасных областей. При более коротких длинах волн необходим учет конечной проводимости. Фактор конечной проводимости главным образом влияет на коэффициент отражения в максимуме, а ход кривых распределения интенсивности по спектру изменяется мало и преимущественно в области аномалий. Поэтому результаты настоящей работы могут служить для оценки свойств металлической решетки в ближней инфракрасной и видимой областях спектра.  [c.191]

Из-за высокого коэффициента отражения металлов в диапазоне ИК-волн для плавления и испарения их с помощью ИК-лазера требуется большое количество тепловой энергии, и поэтому образуется довольно большая зона термического влияния. Расплав должен удаляться струями газа, а это делает невозможным использование прецизионной микрообработки. С другой стороны, высокая плотность пиковой мощности излучения (10 -10 Вт/см ), генерируемая короткими импульсами ЛПМ на поверхности материала, приводит к удалению образовавшихся паров и жидкости в результате микровзрывов. Зона термического влияния может быть на порядок меньше, чем у других лазеров [233]. Эксимерные УФ-лазеры могут образовывать меньшую зону термического влияния, чем ЛПМ, однако ЛПМ обрабатывает материал гораздо быстрее, так как плотность мощности его и, следовательно, поверхностная температура мишени гораздо выше. Применение ЛПМ также более эффективно и в тех случаях, когда необходимо сделать надрезы глубже 0,5 мм [240, 245.  [c.236]

Падающий на поверхность вещества поток лучистой световой энергии частично поглощается, а частично отражается. Из оптики известно, что доля отраженной энергии зависит от длины волны излучения и состояния поверхности вещества. В табл. 3.2 приведены значения коэффициентов отражения (при полном отражении этот коэффициент равен 1) для чистых неокисленных полированных поверхностей металлов.  [c.124]

Годом позже Друде предложил более совершенный метод определения оптических параметров металла. Согласно методу Друде, для определения и и х достаточно измерить сдвиг фаз Аф = ср ( — ср между параллельными и перпендикулярными компонентами отраженного поля и коэффициент отражения R при некотором значении угла падения. Далее п и х можно связать с параметрами среды е ИОВ уравнениях Максвелла. Как показывают расчеты, результаты подобного вычисления не дают удовлетворительного согласия с экспериментально вычисленными значениями я и х в видимой области. Расхождение усиливается с увеличением частоты падающего света. Такое расхождение между теорией и экспериментом можно обьяс-iHiTb влиянием связанных электронов на п и х. Действительно, при развитии вышеупомянутой теории мы исходили из представления о металле как о системе, состоящей из полностью свободных электронов. При увеличении частоты света (для видимой и ультрафиолетовой областей) в оптических явлениях участвуют также связанные электроны, отсюда и вытекает расхождение теории с экспе-рпмеьггом. В инфракрасной области, где оптические свойства металлов Б основном обусловлены наличием свободных электронов, согласие можно считать удовлетворительным. Вообще мы не вправе  [c.65]


Как пам уже известно, в оптическом диапазоне коэффициент отражения при нормальном падении луча для границы воздух — стекло равен примерно 0,04. Увеличение R при наклонном падении луча не является достаточным для получения резкой многолучевой иитерс )еренционной картины в проходящем свете. Коэффициент отражения, близкий к единице, можно получить и при почти нормальном падении света — путем нанесения соответствующих многослойных диэлектрических покрытий или частично прозрачного слоя металла.  [c.103]

Ниже показано, что основные оптические свойства метЕшлов могут быть рассмотрены в рамках развиваемой здесь феноменологической теории. Но прежде всего выясним специфичность этой задачи. Большинство металлов, как известно, характеризуется высоким коэффициентом отражения. Кроме того, даже в тонком слое металла излучение очень сильно поглощается. Опыт показывает также, что при отражении электромагнитной волны от металлической поверхности наблюдается эллиптическая поляризация излучения, отсутствующая лишь при нормальном падении.  [c.100]

Соотношение между потоками отраженной и поглощенной энергий должно зависеть от электропроводимости металла ст. Опыт показывает, что чем больше электропроводимость металла, тем лучше он отражает световые волны (благородные и щелочные металлы служат хорошими отражателями). Хуже проводящие ток металлы характеризуются низким коэффициентом отражения (например, Fe). Потери на джоулеву теплоту для хорошего проводника доллсны быть ничтожно малыми. Будем называть идеальным (ст >) проводник, который полностью отражает электромагнитную волну (./ - I). В дальнейшем изложении мы уточним это определение.  [c.100]

Иначе обстоит дело, когда в качестве зеркал интерферометра применяют тонкие слои какого-либо металла с высоким коэффициентом отражения в видимой области спектра (серебро, алюминий). Хорошо известно, что металлические пленки сильно поглогцают электромагнитные волны (см. 2.5). В этом случае условие (5.57), использованное при выводе формул (5.70), приходится заменять более общим выражением, а именно  [c.243]

Однако указанное возрастание Y не может происходить неограниченно. Когда энергия фотона, постепенно увеличиваясь, достигнет значения для данного металла, наступит своеобразное насьвдение — теперь все электроны в зоне проводимости могут, в принципе, участвовать во внешнем фотоэффекте, так что дополнительное увеличение энергии фотона уже не приводит к возрастанию числа электронов, которые могут покинуть металл. В рассматриваемой ситуации зависимость У(1га>) начинает определяться другими факторами, которые п обусловливают некоторое уменьшение У по мере дальнейшего роста 1ш. К таким факторам относится, в частности, изменение с частотой коэффициента отражения света металлом и степени прозрачности металла, а также увеличение с частотой вероятности поглощения фотонов электронами, находящимися на более глубоких энергетических уровнях.  [c.164]

Все металлы платиновой группы характеризуются высокой химической стойкостью па воздухе они покрываются тонкой окнс-иой пленкой н длительное время сохраняют первоначальный вид. Основные физико-химические свойства их приведены в табл. 31 Платиновые покрытия стойки в агрессивных средах и не окисляются даже при 110 °С. поэтому они применяются для работы при высокой температуре в коррозионной атмосфере. Коэффициент отражения платины в видимой части спектра 70 %, в инфракрасной — 96 %. Платиновые покрытия также характеризуются высокой стойкостью в условиях механического и эрозионного износа и поэтому пригодны для покрытия электрических контактов.  [c.74]

Родий обладает самой высокой отражательной способностью из всех платиновьис металлов. Коэффициент отражения родия в видимой части спектра несколько ниже, чем у серебра, но в ультрафиолетовой части практически не изменяется в атмосфере сернистых соединений и повышенной влажности. Коррозионные испытания родиевых покрытий при периодическом изменении температуры и влажности среды, а также в 3 %-ном растворе поваренной соли показали их высокую стойкость. Микротвердость электролитического родия в 8—10 раз выше, чем полученного металлургическим путем,— это связано с получением мелкозернистого покрытия, а также с включением водорода в осадок, что определяет высокие внутренние напряжения, которые приводят к возникновению сетки трещин. Удельное электрическое сопротивление родия значительно ниже, чем  [c.75]

Возможности и особенности метода. Контроль проводят при одностороннем доступе. Частоту выбирают так, чтобы толщина h металлического слоя составляла не менее половины длины волны. Поэтому с уменьшением It частоту повышают (до 20—25 мГц). Наиболее удобны для контроля конструкции с металлическими слоями толщиной более 1,5 мм. Как правило, выявляются лишь зоны нарушения соединений между слоями. С уменьшением характеристического импеданса неметаллического слоя возможности метода ухудшаются. Если мал (например, пенопласт с малой плотностью), то неметаллический слой слабо влияет на коэффициент отражения Ryih, который определяется в основном значением Zn клеевой пленки. В этом случае обнаруживаются только зоны отсутствия адгезии клея к металлу.  [c.305]

Лакокрасочные покрытия предназначаются для защиты металлов от коррозии, неметаллических материалов (древесины, тканей, пластмасс) от увлалшения и гниения, придания им декоративного внешнего вида и для специальных целей электроизоляции, изменения коэффициента отражения световой энергии, повышения тепло-излучательной способности поверхности, повышения видимости и т. д.  [c.226]


Смотреть страницы где упоминается термин Коэффициент отражения металла : [c.616]    [c.84]    [c.217]    [c.65]    [c.786]    [c.305]    [c.107]    [c.125]   
Теория твёрдого тела (1972) -- [ c.281 ]



ПОИСК



Коэффициент отражения

Отражение

Отражение от металлов

Отражения коэффициент (см. Коэффициент отражения)



© 2025 Mash-xxl.info Реклама на сайте