Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Накачка химическая

Сущность получения лазерного луча заключается в следующем. За счет накачки внешней энергии (электрической, световой, тепловой, химической) атомы активного вещества излучателя переходят в возбужденное состояние. Через некоторый промежуток времени возбужденный атом может излучить полученную энергию в виде фотона и возвратиться в исходное состояние. Фотон представляет собой элементарную частицу, порцию света, обладающую нулевой массой покоя и движущуюся со скоростью, равной скорости света, в вакууме. Фотоны возникают (излучаются) в процессах перехода атомов, молекул, ионов и атомных ядер из возбужденных состояний в более стабильные состояния с меньшей энергией. При определенной степени возбуждения происходит лавинообразный переход возбужденных атомов активного вещества-излучателя в более стабильное состояние. Это создает когерентное, связанное с возбужде-  [c.16]


Химическая накачка, когда инверсия возникает вследствие химической реакции, в которой принимает участие рабочее вещество.  [c.121]

Методы создания инверсной населенности [4]. Специфика газов проявляется и в многообразии физических процессов, применяемых для создания инверсной населенности. К их числу относятся возбуждение при соударениях в электрическом разряде, химическое возбуждение, фотодиссоциация, газодинамические процессы, оптическая накачка, электронно-лучевое возбуждение.  [c.895]

Активная среда НР. Условия возбуждения возбуждение колебательных уровней в химических реакциях оптическая накачка для возбуждения колебательно-вращательных переходов  [c.909]

Здесь левая часть равенства выражает изменение энтропии трибосистемы, необходимое для разрушения - износа массы материала трибосистемы, находящегося в состоянии предразрушения, а правая часть - изменение или накачку энтропии за тот же промежуток времени вследствие физико-химических процессов, происходящих в трибосистеме под влиянием внешних энергетических воздействий. Для композиционного материала  [c.119]

Возможно подразделение лазеров на группы в зависимости от способов накачки. Различают оптическую накачку — при облучении светом определенной частоты — и электрическую — при прохождении тока через рабочее вещество. В последнее время большое внимание уделяется химической накачке, когда инверсия возникает при той или иной химической реакции. В некоторых типах лазеров, например газовых, можно встретить ОКГ как с оптической и электрической, так и с химической накачкой. Полупроводниковые ОКГ могут иметь как электрическую, так и оптическую накачку. С другой стороны, в твердотельных лазерах электрическая накачка не осуществляется, так как используемые твердые тела для ОКГ являются диэлектриками.  [c.17]

Способы создания инверсной заселенности активных частиц зависят не только от конкретной схемы уровней и свойств этих частиц, но и от свойств других компонент активной среды, называемой рабочим телом лазера. В качестве рабочих тел современных технологических лазеров с успехом используются газовые смеси, а также различные конденсированные среды кристаллы, стекла, полупроводники и жидкости. Наибольшее распространение в лазерных системах получили оптический, газоразрядный, газодинамический и химический методы накачки.  [c.33]


При химическом способе образование и возбуждение активных частиц среды происходит в результате неравновесных химических реакций. Основное достоинство данного метода накачки — возможность ее осуществления без источников теплоты и электрической энергии.  [c.34]

Разнообразие свойств активных веществ в газовых лазерах, отличающихся зарядом, составом, структурой уровней и т. д., естественно, приводит к большому числу возможных механизмов получения инверсной заселенности и требует различных способов возбуждения активной среды. Все это делает невозможным введение достаточно простой, но в то же время всеобъемлющей системы классификации газовых лазеров. В таб. 4.1 дан упрощенный вариант классификации тех газовых лазеров, которые уже нашли применение в технологии или по достигнутому уровню своих параметров могут представлять для нее интерес. Место лазера в этой таблице определяется особенностью рабочих уровней и способом возбуждения активной среды. В настоящее время наибольшее распространение нашли газоразрядный, газодинамический и химический методы накачки.  [c.116]

Одновременно может протекать и обратный переход. Поэтому для получения заметной генерации вынужденного излучения необходимо добиваться такого состояния рабочих тел, при котором превалировали бы переходы с возникновением новых фотонов. Этого состояния искусственно достигают воздействием различных источников энергии - световой, тлеющего электрического разряда, химических процессов и др., с помощью которых производят так называемую "накачку" рабочих тел.  [c.244]

Два упомянутых выше процесса накачки (оптической и электрической) не исчерпывают всех возможных методов накачки лазеров. Например, необходимая инверсия может быть создана также с помощью соответствующей химической реакции химическая накачка). Необходимо упомянуть здесь два достойных внимания вида химической накачки 1) ассоциативная реакция, А + В->АВ, ведущая к образованию молекулы АВ в возбужденном колебательном состоянии, и 2) диссоциативная реакция, АВ +/ivА-(-В, ведущая к образованию частицы В (атома или молекулы) в возбужденном состоянии.  [c.109]

Кроме подразделения лазеров на группы по агрегатному состоянию рабочего вещества, возможно подразделение их в зависимости от способов накачки. Так, среди газовых лазеров могут быть лазеры как о электронной, так и с химической накачкой. Полупроводниковые лазеры могут иметь как электрическую, так и оптическую накачку и т. д.  [c.16]

Специфика газов, как рабочей среды лазеров, проявляется и в многообразии различных методов возбуждения газовых лазеров и в механизмах создания инверсной заселенности. Основные методы возбуждения газовых лазеров — это электрический (газовый) разряд, газодинамическая, химическая и оптическая накачки и электронно-лучевое возбуждение.  [c.40]

Дефекты активных элементов могут носить различный характер. Во-первых, это неоднородные включения (твердые частицы, газовые пузырьки),. попадающие в кристалл в процессе его выращивания J24, 25]. Во-вторых, различные химические примеси в матрице кристалла, появляющиеся как на этапе приготовления исходных химических компонент кристалла (шихты), так и в процессе выращивания кристалла. Наиболее распространенной химической примесью является железо, дающее дополнительное поглощение света в кристалле. Существенными оптическими дефектами кристаллов являются неоднородности коэффициента преломления и наличие двулучепреломления в них (также чаще всего неоднородного). Подобный вид искажений может быть заметно уменьшен за счет улучшения технологии процессов. Что же касается термооптических искажений кристаллической решетки, возникающих под действием нагрева источником накачки лазера, то уменьшить их сложнее, поскольку источник принципиально не может быть устранен (стремятся лишь уменьшить его влияние).  [c.34]

Для накачки молекулярных газовых лазеров используются самые различные методы электрический разряд, оптическая, химическая и другие виды накачки. За-  [c.718]


Изложенные выше общие соображения о движениях распределенной системы в значительной мере проникнуты квазилинейной идеологией , отводящей определяющую роль некоторому небольшому набору мод примерно такого же вида, как в линейной системе. Вместе с тем мыслимы и возможны совершенно другие случаи. В нелинейных активных средах возникновение возмущений может носить локализованный и в некотором смысле спонтанный характер. С подобной ситуацией мы сталкиваемся при рассмотрении химических реакций в объемах или на поверхностях при отсутствии перемешивания и при не очень быстрой диффузии, в возбудимых и жизнедеятельных биологических средах (в сердечной мышце, в питательном субстрате с растущими микроорганизмами). Аналогичные процессы могут происходить и в среде, активное и возбудимое состояние которой поддерживается постоянной накачкой энергии из внешнего источника энергии. Такая локализованная активность может приводить к глобальной регуляризации движений сплошной среды, к тем или иным упорядоченным ее движениям, но может порождать и хаотические и беспорядочные движения.  [c.39]

Различают следующие способы накачки оптическую (облучение рабочего вещества светом определенной частоты), электрическую (прохождение тока через рабочее вещество) и химическую (инверсия возникает в результате химической реакции). Для газовых лазеров применяют все способы накачки, для полупроводниковых — электрическую или оптическую, а для твердотельных — оптическую.  [c.852]

Анализ экспериментов с цезием выявил значительный вклад связанных состояний в термодинамику плотной плазмы, что сделало необходимым расширение исследуемой области параметров и переход к экспериментам с другими химическими элементами. Такая задача потребовала существенного увеличения интенсивности ударных волн. Необходимые высокие параметры ударных волн удается получить с использованием конденсированных ВВ. Работа [29] является первым исследованием, где взрывная техника была применена непосредственно для фиксации ударной адиабаты газообразного аргона. Сходная техника затем использовалась в [30] для регистрации ударных адиабат воздуха атмосферного давления с последующим определением на этой основе энергии диссоциации азота. В серии последующих работ взрывные ударные волны в инертных газах и воздухе применялись как источник интенсивного оптического излучения для высокоскоростной фотографии, накачки лазеров, возбуждения детонации, изучения воздействия излучения на вещество, в спектроскопических исследованиях и т.п. [31]. Ввиду того что  [c.348]

Проблема эффективности лазера есть прежде всего проблема возбуждения (накачки) активной среды. Процедура оптической накачки, включающая в себя-преобразование того или иного вида первичной энергии (например, электрической или химической) в световую энергию, концентрацию этой энергии в активной среде и, наконец, преобразование световой энергии накачки в энергию возбуждения ионов активной среды, достаточно сложна и чревата заметными потерями энергии. Термодинамика этих процессов, применительно к наиболее распространенным газоразрядным широкополосным по спектру источникам (лампам накачки), в последние годы интенсивно изучается, и найдены ситуации, когда удается существенно повысить эффективность преобразования энергии накачки в энергию возбуждения (см. гл. 2).  [c.8]

Химическая накачка — возбуждение уровней в процессе специально подобранных экзотермических химических реакций. Химическое возбуждение может характеризоваться сильно выраженной селективностью Р > Р- .  [c.13]

Применение. С. у. служат гл. обр. для нагрева плазмы, создания с помощью полей пучка магнитных ловушек и для сжатия микромишеней в системах УТС с инерциальным удержанием плазмы. Кроме того, пучки, создаваемые С. у., используются для генерации сверхмощных импульсов СВЧ-колебаний в диапазоне от субмиллиметровых до дециметровых волн, для накачки химических лазеров и газовых лазеров высокого давления, в коллективных методах ускорения ионов и т. д.  [c.505]

Таким образом, из анализа структурной схемы, отражающей производство энтропии внутри трибосистемы и диссипацию ее окру-жающей средой, следует, что в процессе фрикционного межфазного взаимодействия общая энтропия трибосистемы возраст ает (идет энтро-1шйная накачка), постепенно достигая некоторого критического значения, при котором плотность внутренней энергии и энтропии в активных объемах полимерной детали и пленки переноса оказывается достаточной для разрушения межмолекулярных и молекулярных (химических) связей. При установившемся режиме трения и изнашивания разрушение (износ) микрообъемов с поверхности трения сопровождается постоянным переходом в критическое состояние все новых микрообъемов приповерхностных слоев. Состояние трибосистемы при таком процессе ха-  [c.117]

В соответствии с новой технологией пуансоны и матрицы указанных штампов подвергались лазерному упрочнению на технологической лазерной установке Квант-16 , оснащенной системой числового программного управления. Пуансоны были изготовлены из стали У8А, матрицы — из стали Х12М, прошедщих стандартную термическую обработку. Упрочнение рабочих кромок деталей штампов производилось после предварительного чернения химическим травлением в среде защитного газа при следующих параметрах режима напряжение накачки — 1800 В энергия излучения Е — 30 Дж фокусное расстояние фокусирующей линзы F — 61 мм степень расфокусировки KF — 5 мм диаметр луча в зоне фокусировки D — 4 мм частота следования импульсов — 1 Гц коэффициент перекрытия Кп — 0,7. Обработка производилась в защитной среде — аргоне.  [c.111]


Пример Н. ф. п. — возникновение лазерной генерации. С термодинамич. точки зрения лазер представляет собой неравновесную систему, т. к. она включает в себя атомы и ноле, к-рые связаны с резервуарами, имеющими раал. темп-ры. При слабой накачке активные атомы излучают независимо друг от друга. С увеличением накачки лазер переходит в когерентное состояние, в к-ром все атомы излучают в фазе. При этом обнаруживается аналогия с фазовыми переходами 2-го рода. Подобная аналогия имеет место при Н. ф. п. и в др. системах физических (образование конвективных ячеек Бенара возникновение осцилляций напряжённости алектрич. поля в диоде Ганна), химических (появление автоколебаний и автоволн при хим. реакциях), биологических (переход в режим ритмич. активности нейтронных ансамблей образование неоднородных структур ври морфогенезе) и т. д. Рассмотрение этих явлений в рамках единого подхода, использующего Ландау теорию фазовых переходов и теорию нелинейных колебаний и волн, составляет основу синергетики.  [c.329]

Химические СО -л. Накачка СОг-л. может производиться непосредственно за счёт хим. энергии тех реакций, к-рые протекают с большой скоростью с высоким выходом колебательно возбуждённых молекул. Примером такой реакции является взаимодействие фтора с водородом или дейтерием. Фтористый дейтерий быстро обменивается энергией с антисимметричной модой Oj. При этом образуется инверсная насеиённость. На рис. 10 показана схема хим. СО2-Л. В камеру сгорания по отд.  [c.445]

Газовые лазеры накачиваются, как правило, электрически, т. е. накачка достигается при пропускании достаточно сильного (постоянного, высокочастотного или импульсного) тока через газовую среду. Основные механизмы накачки в газовых лазерах уже обсуждались в разд. 3.3. В данной главе мы познакомимся с другими механизмами накачки, которые характерны для отдельных лазеров (например, с ионизацией Пеннинга). Кроме того, следует заметить, что накачку некоторых лазеров можно осуществить иным путем, отличным от электрического возбуждения. В частности, мы упомянем о накачке посредством газодинамического расширения, химической накачке и оптической накачке от другого лазера.  [c.344]

Лазеры на HF могут работать как в импульсном, так и в непрерывном режиме. В импульсных лазерах атомарный фтор создается за счет столкновений между донорами фтора и электронами, образующимися либо за счет электрического разряда, либо с помощью дополнительного генератора электронного пучка. В промышленных приборах в качестве донора фтора применяется молекула SFe и используется электрический разряд. Схема накачки аналогична схеме TEA СОг-лазера (рис. 6.21) при этом для создания более однородного разряда используется также УФ-предыонизация. Однако выходная энергия такого устройства значительно ниже, чем поступающая в лазер энергия электрической накачки. Отсюда следует, что в данном лазере лишь часть выходной энергии берется из энергии химической реакции. Однако заметим, что при использовании молекулярного фтора вместо SFe возникает цепная реакция и выходная энергия лазера может существенно превосходить энергию электрического разряда. В этом случае лазер с большим основанием можно считать химическим. В непрерывных лазерах и при высоких мощностях (как, например, в системах, применяемых в военных целях) используется молекулярный фтор. Фтор подвергается тепловой диссоциации в плазмотронном нагревателе и затем истекает через сверхзвуковые сопла (до чисел Маха около 4). Затем в поток подмешивается молекулярный водород, чтобы вступить в цепную реакцию, описываемую уравнениями  [c.400]

Уже в первые годы после открытия лазера такие замечательные свойства его излучения, как исключительно высокие когерентность, направленность и интенсивность излучения, получение значительных плотностей энергии как в непрерывном, так и импульсном режимах, привлекли внимание не только научных работников, занимающихся разработкой и исследованием лазеров, но и инженерно-технического персонала с точки зрения широкого применения лазеров для практических целей в науке и lex нике. Это явилось одной из причин того, что с начала своего возникновения лазерная техника развивалась исключительно высокими темпами. За несколько лет своего существования она достигла весьма высокого уровня развития. С момента создания первого генератора электромагнитных волн основанного на использовании вынужденного излучения активных молекул, предложенного Н. Г. Басовым и А. М. Прохоровым, открылась возможность создания подобных генераторов в широком диапазоне длин волн, включающих в себя всю видимую часть спектра. Впоследствии усилиями ученых различных стран мира было создано весьма большое число различных типов лазеров, работа" ющих в диапазоне от рентгеновской части спектра до длин волн принадлежащих СВЧ диапазону, т. е, включающих всю инфракрасную часть спектра. В настоящее время существует большое число различных типов лазеров, в качестве рабочих тел в которых используются вещества, находящиеся во всех видах агрегатного состояния (твердом, жидком и газообразном). В различных типах лазеров при этом применяются и различные методы накачки оптическая, электрическая, химическая, тепловая и др. Различаются лазеры и по режиму работы, помимо обычных (непрерывного и импульсного) режимов лазеры работают также и в специфических режимах (гигантских импульсов и синхронизации мод).  [c.3]

Основная трудность в выборе теплоносителей, используемых в системах, которые должны быть устойчивы к отрицательным температурам, заключается в стойкости к ультрафиолетовому излучению лам пы накачки. Ультрафиолетовое излучение ламп накачки приводит к распаду многих жидкостей, обладающих оптимальными юптическими и физико-химическими параметрами. Исследования показали, что этиленгликоль, водный раствор метилового спирта и тидрокарбонаты наиболее полно подходят по тепло(физическим свойствам в качестве теплоносителей, но они не устойчивы к действию излучения лампы нака чки. Если исходить только из условий теплопереноса, то вода является несомненно луч щим теплоносителем. Сравнение с другими теплоносителями (табл. 4.7) показывает, что она имеет наивысшую удельную теплоемкость, теплопроводность и наименьшую вязкость. Наименьшая вязкость воды, по  [c.121]

Из изложенного следует, что величина разрушающего перепада температуры АГпр может быть повышена путем уменьшения количества дефектов на боковой поверхности. На практике этого достигают, подбирая такой режим механической обработки поверхности, при котором возникающий при шлифовке трещиноватый слой проникает внутрь элемента на небольшую глубину, и затем химически стравливая его. Здесь же стоит упомянуть о том, что такое травление полезно также и с точки зрения повышения КПД лазера травленая плавно-волнистая поверхность более прозрачна для света накачки, чем шероховатая, получающаяся после шлифовки при соответствующем подборе глубины волнистого рельефа происходит эффективное подавление паразитных типов колебаний.  [c.27]

Наконец, обсудим место лазеров на динамических решетках в квантовой электронике. Первые квантовые генераторы оптического диапазона, созданные уже более 25 лет назад, использовали для усиления явления вынужденного излучения света в среде с инвертированной населенностью (рубин [1], газовые смеси [2]). Активная среда в этих лазерах становилась усиливающей под действием стороннего источника накачки (оптического,, электрического, химического и т.д.), создающего в среде инверсию. Однако достаточно скоро появились также генераторы, использующие нелинейнооптические процессы усиления — вынужденные рассеяния [3] и параметрические многоволновые взаимодействия [4] ). Необходимым условием их реализации было использование для накачки оптического излучения с достаточной степенью монохроматичности.  [c.258]


Основными требованиями, предъявляемыми к лазерной матрице, помимо не рассматриваемых здесь характеристик кристаллического поля, которые обусловливают особенности механизма создания и высвечивания инверсной заселенности, являются следующие лазерная матрица (как легированного, так и стехиометриче-ского лазера) независимо от того, является ли она монокристалли-ческой, поликристаллической или стеклофазной, должна обладать достаточно хорошими оптическими, механическими и теплофизи-ческпми свойствами. Они необходимы для обеспечения весьма жестких требований длительной эксплуатации. Желаемыми свойствами лазерных матриц являются высокая твердость, химическая инертность, отсутствие внутренних напряжений, высокая оптическая однородность (с локальными вариациями показателя преломления менее 10 ), стойкость к порождению центров окраски при воздействии излучения накачки и собственного излучения. Все это должно сочетаться с высокой технологичностью, обеспеченностью сырьем и конкурентоспособными экономическими показателями. Сказанное необходимо дополнить обязательностью оптимального кристаллохимического согласования активируемого примесного иона с характеристиками вмещающей матрицы во избежание сегрегации, напряжений и других нежелательных последствий.  [c.231]

Молекула СРд имеет полосу поглощения с центром вблизи 265 нм и полушириной более 4500 см" (33 нм). При этом ширина линии спонтанного испускания крайне мала, подобно газовым системам. Поэтому фотодиссоци-онные лазеры, являясь типичными газовыми, в то же время обладают преимуществами твердотельных. Так при фотодиссоциации СРд была получена мощность I МВт (1968 г.). Лазерная кювета была длиной в 20 см при диаметре 2 см. Накачка осуществлялась импульсной ксено-новой лампой с энергией 500 Дж. Йодные лазеры позволяют получать энергии более 1000 Дж. Большинство лазеров, основанных на фотодиссоциации, химически необратимы. Поэтому скважность работы генератора определяется скоростью прокачки кюветы. Коэффициент полезного действия фотодиссоционных лазеров доведен до 0,1 %.  [c.103]

Лазер (оптический квантовый генератор) - устройство, преобразующее различные виды энергии (электрическую, световую, химическую, тепловую и Т.Д.) в энергию когерентного электромагнитного излучения оптического диапазона. Действие лазера основано на использовании индуцированного излучения света системой возбужденных атомов, ионов, молекул или других частиц вещества активной средой), помещенной в оптический резонатор. Такое усиление возможно, если активная среда находится в состоянии так называемой инверсии населенностей, когда равновесное распределение частиц (электронов, атомов, ионов, молекул и др.) активной среды по уровням энергии нарущается и число частиц на возбужденном энергетическом уровне превьшает число частиц на ниже расположенном уровне. Для создания и поддержания в активной среде инверсии населенностей применяются различные методы возбуждения (накачка), зависящие от структуры активной среды. Накачка может осуществляться под действием света оптическая накачка), пучка электронов, сильного электрического поля, в газовом разряде, в результате химических реакций, инжекции неравновесных носителей заряда инжекционная накачка), посредством пространственной сортировки молекул (в молекулярных генераторах) и другими методами.  [c.510]

Газовые химические лазеры работают на смесях различных газов. Накачка в них осуществляется за счет химической реакции. Оци излучают в инфракрасной области спектра, могут быть импульсного и непрерывного действия, рассчитаны на бодьшие мощности. Применяются в спектроскопии, лазерной химии, для изучения и контроля атмосферы.  [c.514]

Классификация лазеров с учетом различных методов накачки. Традиционно лазеры классифицируют по типу активной среды, распределяя их по четырем основным группам газовые, жидкостные, твердотельные, полупроводниковые. Более точная классификация должна учитывать не только тип активной среды, но и используемый метод накачки. Подобная классификация приводится на рис. 1.3 ). В схеме на рисунке указываются типы накачки оптическая, с использованием самостоятельного электрического разряда, электроионизационная, тепловая, химическая, рекомбинационная. Эти типы накачки отмечались выше при перечислении физических механизмов возбуждения. Надо, однако, иметь в виду, что вопросы создания инверсии должны рассматриваться с учетом не только процессов возбуждения, но и процессов релаксации энергетических уровней.  [c.15]


Смотреть страницы где упоминается термин Накачка химическая : [c.681]    [c.220]    [c.39]    [c.381]    [c.203]    [c.747]    [c.118]    [c.360]    [c.6]    [c.174]    [c.177]    [c.50]    [c.253]    [c.159]    [c.512]   
Физика процессов в генераторах когерентного оптического излучения (1981) -- [ c.13 , c.68 , c.73 ]



ПОИСК



Л <иер накачкой

Лазерная накачка химическая



© 2025 Mash-xxl.info Реклама на сайте