Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закрученность

Форсунку устанавливают в горел-к е, через которую подается закрученный в завихрителе воздух. Конструкции горелок отличаются большим разнообразием.  [c.136]

Рис. 3.8. Схема закрученного потока в корпусе аппарата Рис. 3.8. Схема закрученного потока в корпусе аппарата

Рис. 7.18. Спектры закрученного потока Рис. 7.18. Спектры закрученного потока
Неоднородность течения за распределительным устройством практически не зависит от неравномерности поля скоростей в подводящем патрубке. Исследовались прямые трубы, колено (г/Оа = 0 и г/О = 0,5) и закрученный поток. Коэффициент гидравлического сопротивления I,. =  [c.292]

Определить движение, пренебрегая сопротивлением воздуха и считая момент силы упругости закрученной проволоки пропорциональным углу кручения ф.  [c.280]

Многочисленные и достаточно разнообразные практические приложения закрученных потоков, сложность их аналитического описания объясняют интерес к ним широкого круга исследователей. Этот интерес вызван еше и тем, что закрутку потока вследствие комплекса свойств используют для интенсификации различных, в том числе тепло- и массообменных процессов. Наиболее полно эти свойства проявляются в устройствах, реализующих эффект энергетического разделения, известный как эффект Ранка, или вихревой эффект.  [c.3]

Условия формирования и технические предложения ограниченных закрученных течений  [c.7]

Оценочные параметры закрученных потоков  [c.7]

Экспериментальное и теоретическое изучение закрученных течений показывает, что их характер и поведение существенно зависят от интенсивности закрутки, оценка которой вызывает.  [c.7]

Автор [196] на основе математического описания гидродинамики закрученного потока и прямого сравнения полей осевых и вращательных скоростей показал, что кинематическое подобие внутренних закрученных потоков определяется двумя безразмерными параметрами. Интефальный параметр Ф характеризует отношение окружного момента импульса к осевому импульсу в произвольном сечении в масштабе линейного размера канала г,  [c.9]

Закрученные течения формируют с помощью одного из трех методов тангенциального подвода использования механических закручивающих устройств (направляющих закручивающих лопаток, винтов, шнеков и т. п.) интенсивного вращения корпусных элементов каналов (вращающихся труб).  [c.11]

В некоторых литературных источниках [15, 34-40, 112, 116] сопловые устройства формирования закрученной струи называют завихрителями. Такое название соплового ввода, формирующего закрученный поток, вносит некоторую двусмысленность, связанную с завихренностью турбулентных течений. Изучение закрученных течений, особенно при достаточно высоких степенях закрутки, неразрывно связано с необходимостью изучения микроструктуры течения, а следовательно, и с завихренностью. Поэтому, когда речь идет о техническом аппарате, устройстве, использующем закрученные потоки, более оправдано употребление терминов устройство формирования закрученной струи (закручивающее устройство) или просто сопловой ввод.  [c.11]


Геометрия Т-закручивающих устройств определяется шириной Ь и высотой а подводящего канала, диаметром d трубы, в которой формируется закрученный поток. Для циклонов характерна длина отводящего патрубка L, которая аналогична длине камеры энергоразделения для вихревых труб. Геометрическим параметром такого закручивающего устройства по данным [18] может служить безразмерный комплекс п = d(d- а)/аЬ (рис. 1.1,а).  [c.12]

Сопловой ввод с АЛ-закручивающим устройством позволяет варьировать интенсивность закрутки в широком диапазоне, поэтому его часто используют в устройствах, предназначенных для экспериментального исследования закрученных потоков. Однако существует менее простое альтернативное решение, использующее два подвода в канал — осевой и тангенциальный, позволяющие получить достаточно устойчивый однородный поток. Количество подаваемого газа или жидкости в осевом и тангенциальном направлениях можно регулировать и изменять независимо друг от друга. Это позволяет варьировать закрутку от нулевой до очень высокой, при которой формируется интенсивно закрученная струя с развитой приосевой зоной обратных токов, такая же как при использовании тангенциально-щелевого закручивающего устройства (рис. 1.2,<з).  [c.14]

Вне ядра в периферийной зоне создаются благоприятные для формирования свободного (потенциального) вихря условия, подобные наблюдаемым и при образовании атмосферных закрученных течений смерчей, пылевых бурь, торнадо, циклонов и ураганов [196].  [c.16]

В отличие от прямоточной закрученная струя практически всегда трехмерна. Вектор скорости V имеет три компоненты радиальную аксиальную, или осевую и тангенциальную Кроме того в закрученных струях всегда имеются радиальный и осевой градиенты давления, а также достаточно сложный характер распределения полной и термодинамической температуры, во многом определяемый конструктивными особенностями устройства, по проточной части которого движется поток. Все многообразие закрученных потоков целесообразно разбить на две группы свободно затопленные,струи различной степени закрутки офаниченные закрученные потоки, протекающие по каналам различной конфигурации.  [c.20]

Предложенная выше классификация не всегда оправдывается, так как характер течения закрученной струи вниз по потоку от закручивающего устройства зависит от его конструктивных особенностей, которые могут привести к существенному изменению профиля скорости в поперечном сечении (рис. 1.5).  [c.21]

С учетом того, что наиболее часто встречаются осесимметричные закрученные течения, анализировать их целесообразно в цилиндрической системе координат (г, z, ф), где г — радиальная координата Z — осевая координата ф — азимутальная (угловая) координата. В большинстве течений можно допустить осевую симметрию, для которой очевидно равенство 5/Эф = 0. Часто радиальную и осевую составляющие скорости предполагают равными нулю V = V= 0), переходя таким образом к рассмотрению пло-  [c.21]

Очень часто закрученные течения, особенно в каналах представляют собой свободно-вынужденный вихрь. Граница между ними для осесимметричных каналов представляет собой также осесимметричную условную поверхность раздела вихрей. В зарубежной научно-технической литературе такой составной закрученный поток принято называть вихрем Рэнкина. Разделительная фаница для вихря Рэнкина определяется радиусом разделения вихрей Tj. Для Tj <г< г, движение газа подчиняется закону потенциального вихря, а для области О < г < — закону движения вынужденного вихря. В 1 л. 1.2 приведены общие характеристики вихрей [44].  [c.24]

Течение в закрученных потоках существенно необратимо, причем необратимость увеличивается с ростом интенсивности закрутки. Часть запаса полной энтальпии, имеющейся у газа на входе в закручивающее устройство, расходуется на преодоление трения, другая — на генерацию турбулентных пульсаций и перестройку течения в процессе продвижения по каналу и за его пределами для случая свободно затопленной струи. В [62] вводится параметр v, который предложено называть коэффициентом потока кинетической энергии кольцевого закрученного потока. Такие течения наиболее часто формируются во фронтовых устрой-  [c.24]

Вихревые термотрансформаторы Ранка, или вихревые трубы получили, пожалуй, самое большое распространение несмотря на достаточно низкую по сравнению с изоэнтропным детандером термодинамическую эффективность процесса перераспределения энергии между свободным и вынужденным вихрями. Прикладные вопросы расчета, проектирования и технического приложения вихревых холодильно-нагревательных аппаратов разработаны достаточно широко, хотя и не в полном объеме. Многочисленные работы, опубликованные в основном в периодических изданиях, несколько монографий по вихревому эффекту, патентная информация открывают большие возможности для совершенствования традиционных и освоения новых областей применения вихревого эффекта в целом и вихревых труб в частности. Успехи практического применения вихревого эффекта снизили интерес исследователей к более глубокому изучению этого чрезвычайно сложного явления газодинамики, физическая природа которого, а, следовательно, и исчерпывающий комплекс характерных особенностей, остаются пока до конца неизученными. Особенно мало публикаций по вихревому эффекту, связанных с изучением микро- и макроструктуры потока с использованием современных средств диагностики закрученных потоков. В определенной степени это объясняется не совсем правильным сло-  [c.28]


Сплошной стальной,вал диаметром 10 см и длиной 6 м закручен на угол 4 . Чему равно наибольшее касательное на якение Построить также эпюру С по сечению.  [c.36]

Кроме того, можно отметить, что если по каким-либо причинам поток перед плоской решеткой закручен, то это закручивание при прохождении жидкости через решетку не будет устранено н сохранится в сечениях за решеткой (рис. 3.8). Вместе с тем струя при набегании на решетку будет растекаться, так что ее поступательные скорости за решеткой соответственно понизятся. Причиной закручивания потока может быть не только несимметричное расположение входного отверстия в аппарате, но и не-си.мметричный профиль скорости струи на входе, даже при симметричном расположении входа относительно осн аппарата. В случае несимметричного профиля скорости равнодействующая динамических сил струи находится не на оси, а в зоне больших скоростей. Поэтому создается вращательный момент, закручивающий струю по направлению от больших скоростей к меньшим.  [c.86]

Как уже отмечалось, в первом электрополе поток сильно закручен, поэтому он отжимается к периферии и степень неравномерности получается очень высокой (Л4к 2, табл. 9.11).  [c.257]

Следующий важный шаг вперед — использование жидкости вместо воздуха в качестве термометрического вещества — был сделан в 1632 г. другим естествоиспытателем Джином Реем, использовавшим водяной стеклянный термометр с открытым концом. Это был несовершенный прибор, и лишь Фердинанду II, великому герцогу Тосканскому, приписывают честь создания прибора, в котором можно узнать реальный термометр. Это был запаянный спиртовой стеклянный термометр, изготовленный примерно в 1641 г. Трубки таких термометров градуировались в равных долях объема колбы. К 1654 г. несколько таких термометров, имеющих 50 градусных меток на трубке, было отослано ряду исследователей в Парме, Милане и Болонье. Слава о новых спиртовых термометрах быстро распространялась, поскольку они явно превзошли все ранее известные приборы. В то время стеклодувное дело было весьма развито на севере Италии, и искусство флорентийских стеклодувов позволило членам знаменитой итальянской Академии опытов (A ademia del imento) для удовлетворения собственной фантазии создавать термометры с необыкновенно длинными закрученными трубками. Эти термометры были настолько чувст-  [c.29]

Кроме краевых различают еще винтовые дислокации. На рис. 10 показана пространственная модель винтовой дислокации — это прямая линия EF (рис. 10), вокруг которой aroMinje п.юскости изогнуты гю винтовой поверхности. Обойдя верхнюю изогнутую атомную плоскость по часовой стрелке, приходим к краю второй атомной плоскости и т. д. В этом случае кристалл можно представить как состоящий из одной атомной плоскости, закрученной в виде винтовой поверхности (рис. 10). Винтовая дислокация так же, как и краевая, образована неполным сдвигом кристалла но плоскости Q. В отличие от краевой дислокации винтовая дислокация и вектор сдвига параллельны.  [c.22]

Однородный круглый диск массы М и радиуса / , подвешенный к упругой проволоке, может совершать крутильные колебания в жидкости. Момент сил упругости проволоки ГПу р г = —Сф, где ось 2 проведена вдоль проволоки, с—коэффициент упругости, а ф — угол закручивания момент сопротивления движению гпсг = = —Рф, где ф — угловая скорость диска, а р > 0. В начальный момент диск был закручен на угол фо и отпущен без начальной скорости. Найти уравнение движения диска, если  [c.282]

Рассмотрено исследование процесса энергораэделения в интенсивно закрученных потоках при их протекании по осесимметричным каналам вихревых труб. Проанализированы существующие модели эффекта Ранка и дана усовершенствованная методика расчета характеристик вихревых труб. Приведены методики расчета и конструирования вихревых устройств. Описаны основанные на однорасходной вихревой трубе вихревые горелки, воспламенители, плазматроны, их конструкции и методики расчета.  [c.2]

Открытый Ранком в 1931 г. эффект состоит в том, что при подаче сжатого газа внутрь специальным образом сконструированной трубы в виде интенсивно закрученного потока он разделяется на две результирующих, которые отличаются друг от друга и от исходного по величине полной энтальпии. Несмотря на изучение вихревого эффекта в течение почти семидесяти лет, многое остается неясным и до сих пор не создана адекватная общепризнанная физико-математическая модель. Прямое решение уравнений Навье—Стокса для столь сложного трехмерного интенсивно закрученного потока вряд ли целесообразно (если даже удастся решить все неимоверные трудности постановочного характера). Это оправдывает попытки разработки модели, описывающей явление, поиск лучшей из которых продолжается и в настоящее время.  [c.3]

Естественно, что постановка целенаправленных опытов является основным методом изучения таких течений, довольно успешно помогающим конструкторам и исследователям в п >иклад-ных задачах использования закрутки потока, однако, поиски новых областей приложения и возрастающая стоимость опытов требуют разумного сочетания опытных и аналитических методик, что на данном этапе стимулирует работы в области совершенствования физико-математичес сих моделей, описывающих процесс. Тем более, что в настоящее время разработана целая гамма вихревых горелочных устройств на базе вихревого энергоразделителя, совершенствование которых возможно лишь при разумном сочетании опытных и теоретических данных в закрученных потоках в совокупности с постановкой численных математических экспериментов и развитием программ их реализации. Важность рассматриваемых проблем, большой накопленный объем информации и оригинальных разработок побудили авторов к опубликованию настоящей книги.  [c.4]

В последние годы закрутку потока стали широко использовать для интенсификации процесса горения. При создании эффективных фронтовых устройств камер сгорания в воздушно-реактивных двигателях, для стабилизации фронта пламени в различных камерах сгорания, при создании эффективных горелочных устройств, плазмотронов с вихревой стабилизацией все большее применение находят потоки с различной интенсивностью закрутки. Это обусловливает актуальность работ, направленных на понимание и описание термогазодинамики закрученных течений как при окислительно-восстановительных экзотермических химических реакциях, так и в их отсутствие. Необходимо вооружить практику методиками экономного расчета и проектирования технических устройств с закруткой потока, а сами устройства сделать более эффективными и экологически чистыми.  [c.7]


Если поток закручен как целое на выходе из сопла завихрите-ля И (г) = onst, т. е. профиль осевой скорости считается равномерным, а окружная составляющая возрастает от О на оси до максимальной на стенке сопла, то параметр закрутки по  [c.9]

Эти критерии получены на основе анализа дифференциальных уравнений движения закрученного потока в трубе в проекциях на оси хкув приближении погра ничного слоя. Использование этого приближения для течений с интенсивным радиальным градиентом давления требует дополнительного исследования и тщательного обоснования, отсутствующего в цитируемых публикациях. Достаточность этих критериев для описания течения закрученных потоков в теплообменных аппаратах, циклонах, горелоч-ных устройствах с предварительной закруткой потока некоторых классов не обеспечивается, когда речь идет об интенсивно закрученных потоках, которые наблюдаются в камерах энергоразделения вихревых труб [15, 62, 196]. Это связано с неоднозначностью обеспечения подобия режимов течения в них при равенстве приведенных выше критериев. Вопрос о подобии потоков в камерах энергоразделения в вихревых трубах интересует исследователей достаточно давно [15, 18, 29, 40, 47, 62, 70, 204]. Пытаясь объяснить наблюдаемые эффекты по энергоразделению турбулентным противоточным теплообменом, А.И. Гуляев предположил, что в геометрически подобных вихревых трубах режимы подобны тогда, когда одинаковы такие критерии, как показатель изоэнтро-пы к= С /С , число Рейнольдса Re-= Kp i/v, число Прандтля Рг = v/a, число Маха М = и безразмерный относительный  [c.10]

Улиточный сопловой ввод более качественно готовит поток на входе в цилиндрический отводящий патрубок или осесимметричный канал — камеру энергоразделения вихревой трубы, что обеспечивает больщую начальную равномерность закрученного потока. Его геометрическими характеристиками являются ширина Л и высота а подводящего канала, диаметр d отводящего патрубка или камеры энергоразделения для вихревых труб, длина L патрубка или длина С камеры энергоразделения. Кроме того, для улиточного соплового ввода задается еще один геометрический параметр — наименьшее расстояние между кромкой улиточного канала и поверхностью отводящего канала или камеры энергоразделения. Следуя [18], обозначим его у (рис. 1.1,6). Для У-за-кручивающего устройства геометрический безразмерный комплекс, являющийся аналогом закрутки, определяется выражением п= d(d+а + 2с)/ аЬ) [18, 196].  [c.12]

Рис. 1.6 Коэффициент потока кинетической энергии V в кольцевом закрученном течении для вихря ы = onst [62] Рис. 1.6 <a href="/info/462460">Коэффициент потока кинетической энергии</a> V в кольцевом закрученном течении для вихря ы = onst [62]
Одной из достаточно важных характеристик закрученных течений являются наличие и размеры в поперечном направлении зоны обратных токов — рециркуляционной зоны, которая возникает в приосевой зоне для струйных течений с достаточно высокой интенсивностью закрутки S > 0,4. При этом возросший радиальный фадиент давления обусловливает заметный рост поперечных размеров струи и снижение осевой составляющей скорости по сравнению с прямоточной струей, что совместно с при-осевым тороидальным вихревым потоком рециркуляционной зоны ифает достаточно важную роль при решении прикладных задач в процессах горения и стабилизации пламени в камерах сгорания.  [c.25]

Одной ИЗ наиболее характерных особенностей течения закрученного потока по осесимметричному каналу является открытый в 1931 г. французским инженером металлургом Ж.Ж. Ранком эффект, заключающийся в существенной температурной неравномерности в потоке газа по сечению канала. При определенной конструкции устройства с закрученным потоком его удается разделить на два потока, различающиеся по полной энтальпии. Это явление получило название эффекта Ранка, или эффекта энергоразделения [244, 247].  [c.26]

В вихревых трубах практически всегда формируется интенсивно закрученный поток, по своей микроструктуре близкий к составному вихрю Рэнкина (рис. 1.7). При этом периферийный вихрь, как уже отмечалось, вращается по закону, близкому к закону постоянства циркуляции Г = onst или к зависимости (1.13) окружной скорости по радиусу. Приосевой вихрь, вращающийся по закону, близкому к вращению твердого тела (1.14) с постоянной угловой скоростью (О = onst, получил название вынужденного [40, 112, 115, 116, 137, 196, 204].  [c.26]

Для авиационных двигателей следует добавить малые габаритные размеры и массу. Основными типами камер сгорания являются трубчатые, кольцевые и трубчато-кольцевые. В большинстве современных конструкций камер сгорания для повышения качества организации рабочего процесса используют закрутку потока с помощью центробежных фо унок, фронтовых устройств и воздушных завихрителей, устанавливаемых перед основной кольцевой зоной горения камер сгорания с двухступенчатым сжиганием топлива, обеспечиваюших сравнительно низкий уровень вредных выбросов. На рис. 1.10 показан вариант конструкции современной камеры сгорания. Разработка и доводка камер сгорания КС — трудоемкий процесс, пока не поддающийся достаточно надежному теоретическому расчетному обоснованию. Обычно в первичной зоне КС создается область интенсивно закрученного вихревого потока, что сопровождается некоторым падением давления, но обусловливает появление таких важных положительных моментов, как повышение эффективности сгорания устойчивая работа равномерное поле температуры легкий запуск пониженная эмиссия загрязняющих веществ сравнительно малая длина камеры.  [c.32]

Циклонно-вихревые устройства применяются в промышленности с конца 19 века [15, 2091 Для разделения сыпучих материалов. Использование особенностей течения закрученного потока в циклонных камерах относится к 20-30-м годам текущего столетия. Уже в середине века появились монографии, посвященные вопросам организации р1абочего процесса в циклонных топках. Сепарационная способность закрученных потоков широко используется в системах осушки и очистки газов. Типичная схема циклонного сепаратора показана на рис. 1.12. Обеспечение  [c.33]

Другой тип горелок с испоЛ1 ванием особенностей закрученного потока для организации и повышения эффективности рабочего процесса сжигания топлива — горелки для вращающихся цементных обжигательных печей. К ним относится и серия горелок ГВП, созданная ГипроНИИгазом (г. Саратов) и предназначенная для сжигания природного газа для обжига цементного клинкера (рис. 1.14). В направляющую трубу вставлен завихритель, имеющий со стороны сопла тангенциально расположенные лопатки а. Противоположный конец завихрителя соединяется с тягой и с рычагом управления. Устройство горелки позволяет изменять степень закрутки потока, что обеспечивает управление рабочим процессом и регулирование длины факела. Горелка позволяет полностью сжигать газ при коэффициенте избытка воздуха а = 1,02- 1,05. Применение горелки такой конструкции повышает производительность печей на 4-4,5% по сравнению с их работой на горелках обычной конструкции. При этом улучшается и качество клинкера. Дальнейшее совершенствование горелок этого типа бьшо связано с созданием вихревой реверсивной горелки для вращающихся трубчатых печей ВРГ, отличающейся от описанной тем, что в ней предусмотрена возможность изменения направления закрутки.  [c.36]


Изложенные выше материалы не претендуют на полноту описания всех примеров использования закрученных потоков в технике. Они должны лишь показать, насколько распространены эти технические решения и как неожиданны в самых различных отраслях. Смерч проникает все в новые области, поражая исследователей неисчерпаемым запасом уникальных термогазодинамических, акустических, электромагнитных и других особенностей.  [c.36]


Смотреть страницы где упоминается термин Закрученность : [c.141]    [c.18]    [c.5]    [c.8]    [c.11]    [c.19]    [c.21]    [c.29]    [c.36]   
Введение в современную теорию динамических систем Ч.1 (1999) -- [ c.346 ]



ПОИСК



Закрученность значение критическое

Закрученность регулярное

Закрученность струи

Замкнутая траектория не)закручениая

Лопатки Параметр закрученности

Стержни Закрученность относительная

Стержни Закрученность сильная — Оценка



© 2025 Mash-xxl.info Реклама на сайте