Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Циклон 289. Схемы

В зависимости от конструкции котла и размеров топочной камеры возможны две различные схемы включения выносного циклона в контур циркуляции экрана. На рис. 6-1,а изображена схема I — включения выносного циклона в контур циркуляции экрана с расположением верхнего коллектора экрана ниже уровня воды в циклоне. На рис. 6-2 дан контур циркуляции с выносным циклоном и расположением верхнего коллектора экрана выше уровня воды в циклоне (схема II). На рис. 6-1,6 дан график циркуляции для экранного контура с выносным циклоном и с расположением верхнего коллектора экрана ниже уровня воды в циклоне. В этом случае полезный напор всего контура обычно больше, чем полезный напор звена экранных труб, т. е.  [c.156]


Ркс. 1.10. Принципиальная тепловая схема ПГУ-1100 с ВПГ-2650 с сжиганием твердого топлива в псевдоожиженном слое /—сушилка i —циклоны 3—высоконапорный парогенератор с псевдоожиженным слоем 4—циркуляционный насос 5—паровая турбина мощностью 800 МВт 5—конденсатор 7—конденсаторный насос 8—подогреватель низкого давления 9—питательный насос 10—деаэратор И— экономайзер 12—газовая турбина 13—компрессор 14—паровая турбина с противодавлением для привода дожимающего компрессора 15—дожимающий компрессор  [c.22]

Рис. 1.12. Типичная схема циклонного сепаратора Рис. 1.12. Типичная схема циклонного сепаратора
Рис. 47. Циркуляционное течение. Рис. 48. Схема циклона. Рис. 47. <a href="/info/2644">Циркуляционное течение</a>. Рис. 48. Схема циклона.
В кузнечном производстве получили распространение роботы серий Циклон и Ритм . Максимальная грузоподъемность до 30. кг. Точность позиционирования кузнечных роботов выше, чем литейных, и находится н пределах (0,1...0,5) мм. Советскими машиностроителями созданы также крупные ковочные манипуляторы грузоподъемностью до 2500 кг. Схема участка кузнечного цеха с применением робота показана на рис. 10.6.  [c.226]

В последние годы для сжигания мазута все чаще используют циклонные топки. Принципиальная схема циклонного процесса показана на рис. 3.6. Циклонные топки применяются в энерготехнологических  [c.245]

Рис. 3.6. Схема установки мазутных форсунок в соплах циклонной камеры Рис. 3.6. Схема установки <a href="/info/30273">мазутных форсунок</a> в соплах циклонной камеры

Рис. 4.17. Схема двухступенчатого циклонного агрегата для обезвреживания промышленных выбросов Рис. 4.17. <a href="/info/401111">Схема двухступенчатого</a> циклонного агрегата для обезвреживания промышленных выбросов
На рис. 7.11 представлена схема установки для сжигания сточных вод и кубовых остатков изопренового производства. Токсичные отходы обезвреживаются в циклонном реакторе I за счет их сжигания при температуре 1000 °С, при которой происходит полное выгорание органических веществ и выпаривание воды, а минеральные соли расплав-  [c.329]

Индивидуальные системы пылеприготовления с промежуточными бункерами 8 (рис. 20) позволяют уменьшить зависимость работы котла от характеристик поступающего топлива и условий работы мельниц. В отличие от ранее рассмотренных схем готовая пыль вместе с отработанным сушильным агентом после сепаратора 2 направляется в циклон 5, где происходит отделение пыли от сушильного агента. После циклона 5 пыль по течкам поступает в бункер 8 пыли, откуда питателем 9 подается в смеситель 10, установленный на пылепроводе, ведущем к горелке 4. В этот же пылепровод поступает сушильный агент из циклона 5, транспортирующий пыль к горелкам. Для преодоления значительного гидравлического сопротивления тракта пылеприготовления предусмотрен мельничный вентилятор 12 с распределителем первичного воздуха 11 за ним. Размещение мельничного вентилятора после циклонов 5 позволяет обеспечить работу всей системы пылеприготовления под разрежением (уменьшается запыленность помещения), а транспортировку готовой пыли к горелкам — под наддувом.  [c.49]

Большинство газомазутных топок имеют традиционную призматическую форму со слабо наклонным подом (15—20°) и одностороннюю (рис. 37, а) или встречную (рис. 37, б) компоновку горелок. Известны топки циклонного типа (рис. 37, в) и с подовым расположением горелок (рис. 37, г). Как показывает опыт эксплуатации, применение сложной конструкции топок с циклонами не оправдывает себя. Как положительный фактор схемы рис. 37, г можно отметить небольшое значение локальных тепловых потоков на экраны, а в схемах рис. 36, в и г снижение образования оксидов азота и серы за счет подавления генерации атомарного кислорода путем принудительного подвода к корню факела инертных продуктов сгорания.  [c.80]

На рис. 99, а показана схема работы одиночного циклона с тангенциальным подводом потока. Запыленный поток по входному патрубку 1 поступает в корпус 2 циклона. Под действием возникающих при вращении потока центробежных сил частицы золы отжимаются к внутренним стенкам и выпадают в бункера-накопители 3 или непосредственно в золопроводы 4. Очищенный газ отводится из циклона по патрубку 5. С увеличением размера твердых частиц центробежные силы сказываются сильнее и, следовательно, степень очистки возрастает.  [c.147]

Степень очистки повышается при установке нескольких циклонов малого размера, соединенных блоком, с общими коробами на входе для запыленного и выходе —очищенного газа. Схема установки блока циклонов доказана на рис. 7-22.  [c.330]

Рис. 20-3. Схемы циклонных топок Рис. 20-3. Схемы циклонных топок
В зависимости от особенностей используемого топлива рассмотренная схема так или иначе видоизменяется в деталях. В частности, при размоле взрывоопасного топлива на пылепроводах, сепараторе, циклоне и распределительном коробе устанавливают взрывные клапаны, предназначенные для предохранения системы от повреждения в случае взрыва в ней топливной пыли. Готовая пыль из циклона 9 может быть подана в желоб 7 и по нему шнеком доставлена к соседнему котлу. По линиям 8 из бункера 10 и желоба 7 отсасываются в циклон водяные пары.  [c.270]

Однако при высоких концентрациях растворенных в котловой воде веществ. в соленом отсеке, когда этот отсек располагается в барабане, достаточно хорошей очистки пара достичь трудно, так как высота парового пространства оказывается для этого недостаточной. В таких случаях соленый отсек располагается не в барабане парового котла, а в выносном циклоне. Двухступенчатая схема очистки пара с выносными циклонами показана на рис. 4.27.  [c.134]


При такой схеме из циклонов пар подается под промывочное устройство.  [c.135]

Перепуск пара из соленых отсеков в чистые часто проводится также при расположении соленых отсеков в барабане. Однако в таких схемах из соленых отсеков, располагаемых обычно с торцов барабана, вместе с паром в чистый отсек поступает вода, в связи с чем солесодержание чистого отсека возрастает, а эффективность схемы уменьшается. Когда солёные отсеки размещаются в выносных циклонах, переброс воды практически исключается.  [c.135]

На рис. 4.30 представлен поперечный разрез барабана котла ТП-90, в котором для сепарации капельной влаги над паропромывочным устройством также установлен жалюзийный сепаратор. В барабане котла кинетическая энергия потоков, поступающих из экранов топочной камеры, гасится во внутрибарабанных циклонах. В схемах рис. 4.29 и 4.30 обеспечивается достаточно равномерная нагрузка поверхностей сепараторов и паропромывочных устройств.  [c.136]

Рис. 4.27. Двухступенчатая схема испарения с выносными циклонами Рис. 4.27. <a href="/info/401111">Двухступенчатая схема</a> испарения с выносными циклонами
Рис. 5.1. Схема циклонного сепаратора Рис. 5.1. Схема циклонного сепаратора
Рис. 5.8. Схема циклона с отводами жидкостной, пленки Рис. 5.8. Схема циклона с отводами жидкостной, пленки
НО при совместной работе циклонного и жалюзийного сепараторов он намного меньше, чем при работе только циклонного сепаратора. Однако следует иметь в виду, что данная схема сепарирующего устройства эффективна при Су> 1,8 104 При меньших значениях этого критерия влияние жалюзийного сепаратора практически не проявляется.  [c.151]

РИС. 45. Схемы циклонных топок с горизонтальным (а) и вертикальным (б) расположением циклонной камеры  [c.117]

Аналогичный циклонный принцип организаций технологического процесса заложен и в другие комбинированные установки, которые находят все большее применение в технологических процессах черной и цветной металлургии, в промышленности стройматериалов, в химической промышленности. Особенно эффективен циклонный принцип обезвреживания отходов химической промышленности (при этом имеются в виду как жидкие, так и газообразные отходы). При обезвреживании жидких отходов благодаря высокой температуре в циклонной топке и вихревому двил ению газов происходит интенсивное испарение пульверизированных стоков с разложением и сгоранием органических примесей и плавлением солевого остатка. Последний отводится в расплавленном состоянии и затем мол<ет быть использован. Физическое тепло уходящих газов с температурой около 1000°С используется для выработки производственного пара или по замкнутой схеме — для предварительного выпаривания сточных вод.  [c.189]

Наряду с разработкой комбинированных установок для отдельных технологических процессов в химической промышленности разрабатываются комплексные энерготехнологические схемы, в которые часто включаются комбинированные циклонные агрегаты. При этом комплексные энерготехнологические схемы предусматривают организацию наиболее рационального и оптимального использования ВЭР.  [c.189]

Батарейный циклон. Батарейный циклон, схема которого дана на рис. 36, состоит из многих маленьких циклончиков диаметром 150, 250 и 300 мм, сгруппированных в батареи, через которые проходит засоренный золой газ.  [c.65]

Безбарабанный котел с уравнительными емкостями (рис. б-8,л ) опробован Е. Ф. Бузниковым. Питательная вода вводится в циклон. Схема оказалась надежной в работе.  [c.89]

В камерных топках осуществляют два-способа сжигания топлива — факельный и вихревой (циклонный). Схема работы камерной топки с факельным сжиганием показана на рис. 4-7. Такая топка пригодна для использования газового, жидкого и твердого топлива. Газовое топливо обычно не требует какой-либо предварительной подготовки, жидкое требует подогрева и тщательного распыления, твердое топливо перед поступлением в топку подвергается превращению в пылевидное состояние. Обычно на одной и той же электростанции используют и газовое, и жидкое топливо, но Ожигают их, как правило, раздельно жидкое топливо, шозволяющее создавать запас его на электростанции, часто служит резервным топливом.  [c.82]

Рис. 17.5. Схемы организации топочиы.х процессов а — в плотном слое б - в пылевидном состоянии в - в циклонной топке воздух Т, В — топливо, воздух ЖШ — жидкий 1илак Рис. 17.5. Схемы организации топочиы.х процессов а — в <a href="/info/515460">плотном слое</a> б - в пылевидном состоянии в - в <a href="/info/877">циклонной топке</a> воздух Т, В — топливо, воздух ЖШ — жидкий 1илак
В свою очередь каждую из приведенных групп будем различать по важнейшей характеристике дисперсных потоков — концентрации твердого компонента а) теплообменники типа газовзвесь , б) теплообменники типа флюидный поток , падающий слой , в) теплообменники типа движущийся плотный слой . Естественно, что характеристики теплообменников также зависят от взаимонаправления потоков (прямоточные, противоточные, перекрестные, многоходовые схемы), от особенностей твердого компонента (двухкомпонентные, многофазные и многокомпонентные среды мо-нодисперсные и полидисперсные частицы и т. п.), от назначения теплообменника (низкотемпературные и высокотемпературные воздухоподогреватели, регенераторы ГТУ, пароперегреватели, системы теплоотвода в ядерных реакторах и т. п.), от конструктивных особенностей (с тормозящими элементами, с вибрацией, в циклонных аппаратах) и пр.  [c.359]


Наряду с гомогенными и квазигомогенными реакторами с жидкими суспензиями известны также предложения использовать горючее в виде потока газовзвеси [Л. 171] или в виде гравитационного слоя [Л. 296]. На рис. 12-4 представлена схема атомного реактора (Нидерланды), доложенная на Женевской конференции по мирному использованию атомной энергии. Частицы горючего перемещаются нисходящим гравитационным слоем в технологических каналах, а затем транспортируются гелием через элементы парогенератора в исходное положение. Сепарация частиц происходит в циклонах, а гелий отсасывается циркуляционными газодувка-ми. Для обеспечения большей надежности движения внизу каналов предусматриваются вибраторы. В отличие от этой схемы в [Л. 355,] описан реактор также с движущимся слоем горючего, но при этажном , а не параллельном расположении активной зоны и парогенератор-26—2503 393  [c.393]

Рис. 9.5. Схема подвода и поле скороетей гй в рабочей камере модели электрофильтра с 12-метровыми электродами, установленного за групповым циклоном Рис. 9.5. Схема подвода и поле скороетей гй в <a href="/info/2534">рабочей камере модели</a> электрофильтра с 12-метровыми электродами, установленного за групповым циклоном
Циклонно-вихревые устройства применяются в промышленности с конца 19 века [15, 2091 Для разделения сыпучих материалов. Использование особенностей течения закрученного потока в циклонных камерах относится к 20-30-м годам текущего столетия. Уже в середине века появились монографии, посвященные вопросам организации р1абочего процесса в циклонных топках. Сепарационная способность закрученных потоков широко используется в системах осушки и очистки газов. Типичная схема циклонного сепаратора показана на рис. 1.12. Обеспечение  [c.33]

Пример аксонометрической схемы системы вытяжной вентиляции ВЗ столярной мастерской учебно-производственного комбината приведен на рисунке 18.29. Система обеспечивает отсосы от трех станков и напольный. Пьитевой вентилятор типа ЦП7-40 № 5, исполнение Б мощностью 7,5 кВт обеспечивает работу системы, выброс опилок и стружки в циклон типа Ц-800, воздуха — в атмосферу. На схеме показаны отсосы от технологического оборудования с указанием количества про-  [c.413]

На рис. 5.5 дана схема энергетического парогенератора среднего давления БМ-35-РФ, имеющего следующую характеристику па-ропроизводительность - 50 т/ч, давление перегретого пара - 3,93 МПа и его температура — 440 °С, температура питательной воды — 150 " С. Питательная вода поступает в водяной экономайзер / кипящего типа, откуда кипящая вода поступает в барабан 2. Из последнего по опускным трубам вода поступает в фронтовой экран 3, задний экран 4 и коллектор бокового экрана 5. Из фронтового и заднего экранов парожид-косгная смесь поступает в барабан 2, а из верхнего коллектора 6 бокового экрана в циклон 7, откуда отсепарированный насыщенный пар поступает в барабан 2, а жидкость самотеком возвращается в коллектор 5. Подъемные трубы заднего экрана разведены в фестон 8, за которым устанавливается пароперегреватель 9. Вход в него насыщенного пара н выход перегретого наглядно изображены на рис. 5.5.  [c.287]

На рис. 7.7 показана схема циклонной энерготехнологической установки для получения обесфторенных плавленых фосфатов и энергети-  [c.321]

Сущность его состоит в следующем. Водяной объем барабана котла и парообразующие циркуляционные контуры котла делят на несколько отсеков (ступеней) рис. 104, соединенных параллельно по пару и последовательно по воде. Питательная вода подается в первую ступень /, для второй ступени II питательной водой является продувочная вода первой ступени. Продувочная вода второй ступени II поступает в третью ступень III и т. д. Концентрация примесей в воде нарастает от ступени к ступени. Продувку котла проводят из последней ступени, в воде которой содержится максимальное количество примесей. Наибольшее распространение в современных котлах получили двух-и трехступенчатые схемы рис. 104. Вторая ступень II может быть организована внутри барабана, либо вне его — в выносных циклонах. В трехступенчатой схеме первую / и вторую II ступени выполняют в барабане /, а третью III — ъ циклоне 2. Во вторую и третью ступени испарения частично или полностью включают боковые экраны 3. При питательной воде с умеренным солесодер-жанием используют двухступенчатую схему испарения. При питательной воде низкого качества — трехступенчатую. Производительность каждой ступени испарения выбирают из условия обеспечения минимального соле- и кремнесодержания пара на выходе из барабана с использованием уравнений солевых балансов. Для схемы двухступенчатого испарения котлов высокого давления, когда общее солесодержание пара в основном определяется уносом кремневой кислоты, эти уравнения имеют вид  [c.157]

Рис. 4-7. Принципиальная схема ступсичатого иснареиия воды в паровом котле. Поверхности нагрева в первой ОУ. второй (Я) третьей (III) ступени испарения 4 — выносной циклон. Рис. 4-7. <a href="/info/4763">Принципиальная схема</a> ступсичатого иснареиия воды в <a href="/info/6628">паровом котле</a>. Поверхности нагрева в первой ОУ. второй (Я) третьей (III) ступени испарения 4 — выносной циклон.
На принципиальной схеме, показанной на рис. 4-7, изображено трехступенчатое испарение котловой воды в котлоагрегате, имеющем котельный пучок (I ступень испарения) фестон и задний экран (И ступень) и боковые экраны (П1 ступень испарсния), пар из которых поступает 3 вынесенный из барабана циклон-сепаратор, а из последнего пдет в барабан. Производительность I ступени rai=70%, И ступени — пч— =20% и П1 ступени Пз=10% общей производительности котлоагрегата.  [c.176]

На рис. 5.13 показана схема циклонного сепаратора, установленного в тарельчатом тепло- или массообменном аппарате [127]. Сепаратор состоит из внутреннего 1 и наружного (внешнего) 2 патрубков, завихрптеля 3 ir конуса 4. Завихритель выполнен в виде радиально расположенных пластин, установленных под определенным углом к горизонту.  [c.151]

Рис. 5.14. Конструктивная схема циклонного сепара-, тора Рис. 5.14. <a href="/info/441835">Конструктивная схема</a> циклонного сепара-, тора
На рис. 46, а показана индивидуальная схема пылеприготовле-ния с промежуточным бункером. Сырое дробленое топливо из бункера 1, пройдя через автоматические весы 2, поступает в питатель мельницы 3, регулирующий поступление топлива в мельницу 4. Шаровая барабанная мельница изнутри выложена броневыми плитами и на V4 объема заполнена стальными шарами диаметром 35—40 мм. Частота вращения барабана мельницы — 16— 25 об/мин. Шары, пересыпаясь, истирают уголь в пыль. В мельницу по воздуховоду 12 попадает горячий воздух с температурой 250—400° С. Подсушенное размолотое топливо горячим воздухом направляется в сепаратор 5, где крупные частицы топлива отделяются и ссыпаются в мельницу, а мелкая пыль поступает в циклон 6, в котором разделяются пыль и воздух. Пыль попадает в бункер 7, а воздух вентилятором 9 сбрасывается в пылеугольную горелку 10 топки Ц. Этот воздух является первичным. В трубопровод с первичным воздухом шнековым питателем 8 добавляется необходимое количество пыли из бункера 7.  [c.119]


В настоящее время преимущественное развитие получили вертикально-водотрубные котлы, более простые по конструкции и надежные в эксплуатации. Вертикально-водотрубные котлы типа ДКВр, один из которых изображен на <рис. 57, имеют общую конструктивную схему—это двухбарабанные котлы с естественной циркуляцией и экранированной топкой, состоящей из блоков. Барабаны расположены вдоль котла, кипятильные трубы — в виде коридорного пучка. Движение продуктов сгорания горизонтальное с несколькими поворотами. В верхнем барабане котла и выносном циклоне осуществляется сепарация пара. В этот барабан по двум трубам подается питательная вода. В верхнем барабане установлены предохранительные легкоплавкие пробки.  [c.132]

Используя конструктивную схему двигателя Райт-Циклон 8БК-1820 , А. Д. Швецов и сотрудники ЦИАМ разработали серию двигателей М-25, М-62 и М-63 мощностью до 1100 л.с. Конструкторским коллективом В. Я. Климова на базе 12-цилиндрового У-образного двигателя Испано-Сюиза-12 была разработана конструкция 750-сильного двигателя М-100, а группой С. К. Туманского (ныне член-корреспондент АН СССР) на основе 14-цилинд-рового звездообразного двухрядного двигателя Гном-Рон-14 был разработан двигатель М-85.  [c.345]

Схема установки для сжигания сточных вод и кубовых остатков изопренового производства показана на рис. 3-14. Обезвреживание токсичных отходов, в состав которых входят высококипящие органические вещества и минеральные соли, осуществляется в циклонном реакторе за счет их сжигания при температуре 1000°С. Для поддержания в реакторе такой температуры используется первичное топливо (природный газ). При температуре lOO f происходит полное выгорание органических составляющих и выпаривание воды, а минеральные соли расплавляются и в виде расплава выводятся из циклонного реактора через специальную летку. Вертикальный реактор оборудован гарнисажной футеровкой и испарительной системой охлаждения. Газы охлаждаются в котле-утилизаторе, где вырабатывается пар технологических параметров. После котла-утилизатора газы поступают в струйнопенный пылеуловитель для очистки от возгонов солей, а оттуда дымососом выбрасываются в дымовую трубу. Обезвреживаемые отходы перед подачей  [c.137]

В последнем случае необходимо определенное конструктивное оформление топочной камеры котельного агрегата с учетом состава и физико-технических характеристик газообразных отходов. Схемы обезвреживания Отходов в печах сжигания разработаны для многих химических производств. В перспективе эти схемы будут находить все большее применение. К одной из таких схем относится разработанная Техэнергохимпромом схема огневого обезвреживания отходов производства ацетилена. В этой схеме обезвоженная сажа пневмотранс портом подается в печи циклонного типа, которые благодаря своим аэродинамическим качествам и большим тепловым напряжениям обеспечивают полное выгорание сажи. Уходящие газы печей используются в котлах-утилизаторах для выработки насыщенного пара давлением 2,8 МПа в количестве 19 т/ч, включая собственные нужды. Полученный утилизационный пар используется непосредственно в технологическом процессе производства ацетилена. Аналогично для обезвреживания токсичных составляющих отходов производства изопрена все большее распространение будет находить установка циклонных реакторов. По данным Техэнергохимпрома, экономический эффект при внедрении этих установок по сравнению с сжиганием отходов на установках без утилизации тепла может составить более 0,5 млн. руб.  [c.178]

Технология получения кормовых обесфторенных фосфатов методом гидротермической переработки природных фосфоритов в плавильном циклоне по энерготехнологической схеме основана на следующем принципе. Основным технологическим аппаратом схемы является высокофорсированная циклонная топка, в которой совмещены процессы нагрева, плавления и обесфторивания ИСХОДНОГО сырья, при этом фтор, содержащийся в фосфоритах, переводится в газовую фазу и используется для получения вторичного продукта — фтористого натрия. Тепло уходящих продуктов сгорания используется в агрегате для выработки пара энергетических параметров. Энерготехнологический агрегат (рис. 3-23) содержит плавильный узел (циклонную топку со сборником расплава), радиационную камеру, пароперегреватель, воздухоподогреватель, экономайзер и работает на естественной циркуляции.  [c.187]


Смотреть страницы где упоминается термин Циклон 289. Схемы : [c.151]    [c.330]    [c.147]   
Машиностроение Энциклопедия Т IV-12 (2004) -- [ c.289 , c.290 , c.291 ]



ПОИСК



Циклон



© 2025 Mash-xxl.info Реклама на сайте