Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Трубопроводы механический

Фарфор широко применяют для изготовления изделий, обладающих более высокими механическими свойствами, чем керамика. Из фарфора изготовляют реакторы, циклоны, насосы и трубопроводы. Механические свойства фарфора приведены в табл. 8.58.  [c.309]

Разнообразие динамических нагрузок обусловлено одновременным действием на трубопроводы механических вибраций пульсаций давления жидкости, возбуждаемых вследствие неравномерности подачи жидкости насосами гидравлических ударов, возникающих в моменты включения и отключения потребителей колебаниями рабочего давления в процессе работы гидравлической системы.  [c.128]


Становится необходимым выполнение комплекса мероприятий по повышению пожаробезопасности производств. Одной из причин развития пожаров является несоответствие фактической огнестойкости строительных конструкций, ограждений технологического оборудования, экранов, рам, этажерок, резервуаров, трубопроводов, механических устройств защиты технологических проемов требованиям противопожарных норм.  [c.4]

Кроме испытания методами дефектоскопии контрольные стыки на допуск подвергают в некоторых случаях (например, при сварке трубопроводов) механическим испытаниям и металлографическим исследованиям. Задание на тренировку выдается прорабом по сварке. Длительность тренировочных занятий — 2—4 дня, а в некоторых случаях и более.  [c.310]

При выбранном масштабе диаграммы указанную последовательность не удается показать. Поток эксергии, переходящий через регенеративный водоподогреватель I в остальные восемь регенераторов, постепенно растет за счет уменьшения эксергии основного потока. Диаграмма наглядно показывает только те отдельно взятые потери, которые переходят к окружающей среде в месте их зарождения. Здесь имеются в виду потери с уходящими газами и очаговыми остатками, потери от излучения кладкой котла и изоляцией трубопровода, механические и электрические потери. Остальные потери соединились в одном центральном (черном) потоке, следующем в конденсатор.  [c.131]

Внутреннее давление, поля температур в корпусе и привариваемом элементе, усилия со стороны трубопровода (механические и от самокомпенсации) Местные мембранные + местные изгибные -f общие температурные + напряжения компенсации (< )кк  [c.55]

Если достоверность результатов обнаружения нарушений геометрии трубопроводов, механических, коррозионных и металлургических дефектов (расслоение металла) современными внутри-трубными снарядами высокая, то оценка трещиноподобных дефектов в сварных соединениях, продольных трещин в трубах выглядит более проблематичной. Кроме того, затруднена оценка дефекта как концентратора напряжений, не определяются изменения физикомеханических свойств трубных сталей в связи с их старением, напряжения в теле трубы, коррозионно-механические разрушения стресс-коррозия . Причина возникновения последней во многом связана с тем, что эксплуатация отдельных участков происходит при механических напряжениях, значительно превышающих проектные. Нередко расчётные напряжения, обусловленные внутренним давлением газа, являются лишь частью напряжений, реально действующих в металле труб. Необходимо учитывать напряжения, возникновение которых связано с самим производством труб и последующим монтажом трубопровода (остаточные напряжения). Кроме того, внутритрубная дефектоскопия, другие методы неразрушающего контроля лишь дают информацию о состоянии дел и, сами по себе, ничего не меняют в отношении прочности и надёжности газопроводов.  [c.3]


К недостаткам портландцементных покрытий относится способность разрушаться при механическом воздействии и термическом ударе. Однако открытые резервуары легко ремонтировать, накладывая цемент на поврежденные участки поверхности. Имеются данные, что в трубопроводах холодной воды небольшие трещины самопроизвольно залечиваются продуктами коррозии, которые состоят из смеси ржавчины и веществ, выщелачивающихся из цемента. В водах, богатых сульфатами, портландцемент подвержен разъеданию, однако в настоящее время стойкость цементных составов в таких средах значительно повышена.  [c.244]

Для обозначения трубопроводов в ГОСТ 21.106—78 установ-дены следующие буквенно-цифровые обозначения (марки) с учетом содержимого трубопроводов водопровод, общее обозначение — ВО, хозяйственно-питьевой — В1, оборотной воды — В5 (подающая сеть), В6 — обратная сеть, противопожарный — В8, производственный — В9 канализация, общее обозначение — КО, бытовая (фекальная) — К1, дождевая (ливневая) — К2, производственная, общее обозначение — КЗ, механически загрязненных вод — К4, химически загрязненных вод — К7, кис-дых вод — К8, щелочных вод — К9 горячее водоснабжение, подающая сеть — ТЗ, циркуляционная сеть — Т4 газоснабжение, общее значение — РО.  [c.407]

ОТ источника лучистой энергии 2 — приемник тепла 5 — потери излучением иН —аккумулирование с ЫН 5 — аккумулирование с НаР б — потери излучением ЫаР 7 — котел 5 — перегреватель 5 —1-й промежуточный подогреватель /б —2-й промежуточный подогреватель //—1-я ступень турбины 2 — 2-я ступень турбины /5 — 3-я ступень турбины 14 — генератор переменного тока /5 — радиатор-конденсатор /б — нагрузка 15 кВт /7 —устройства управления /б — иасос — тепловые потоки ------—трубопроводы для жидкости —паропроводы ------------------механические связи  [c.220]

Основными причинами разрушения трубопровода на 96 и 123-м км трассы признаны неудовлетворительные физико-механические характеристики металла труб и сварных соединений (пониженные прочность и ударная вязкость). Механические свойства оказались низкими из-за сильного загрязнения металла неметаллическими включениями, повышенного содержания в металле труб углерода, марганца и ванадия, а также вследствие отсутствия термообработки сварных соединений.  [c.58]

Причинами разрушения трубопровода на 365-м км трассы явились снижение прочности стыкового шва вследствие некачественного выполнения сварки (наличие в шве непроваров, шлаковых включений, крупнозернистой структуры) и неудовлетворительные механические характеристики металла шва (ударная вязкость составляла 0,56-0,79 кгм/см вместо регламентируемых 3 кгм/см ).  [c.58]

Как показано выше, сероводородное растрескивание и водородное расслоение металла, а также степень изменения его физико-механических свойств являются факторами, определяющими техническое состояние оборудования и трубопроводов сероводородсодержащих месторождений.  [c.120]

По характеру физического процесса потери могут быть потерями тепла в окружающую среду с уходящими газами, технологической продукцией, технологическими отходами, уносом материалов потери тепла из-за химического и механического недожога топлива потерями тепла с охлаждающей водой потерями ЭЭ в трансформаторах, электрических аппаратах, системе передачи ЭЭ, преобразователях ЭЭ, электроприемниках потери тепла с поверхности оборудования, с утечками через неплотности потери энергии гидравлического напора при дросселировании потери энергии на трение при движении жидкости, пара и газа по трубопроводам механические потери энергии — потери на трение.  [c.257]

В качестве среды для испытоний довлением допускается применение жидкостей с низким давлением паровой фазы, воды, содержащей депрессант температуры замврМния и других приемлемых жидкостей, при условии, что климатические условия, производительность трубопровода, механические примеси в транспортируемом продукте или другие условия делают их предпочтительными жидкостями для испытаний.  [c.150]


Техника сварки кольцевых стыков труб. Сварка кольцевых стыков трубопроводов имеет некоторые специфические особенности. Обычно сваркой выполняют Д1вы на трубах диаметром от десятков миллиметров до 1440 мм при толщине стенки до 16 мм и более. При толщине стенки труб из низкоуглеродистых и низколегированных сталей до 8 — 12 мм сварку можно выполнять в один слой. Однако многослойные швы имеют повышенные механические свойства, определяемые положительным влиянием термического цикла последующего шва на металл продыдущего шва,  [c.29]

В целом КПД ТЭС т)тэс. кром величины т),, включает в себя внутренний относительный т о, и механический т] КПД турбины (см. гл. 20), а такжг КПД электрического генератора т],,, трубопроводов г тр (который учитывает ютери теплоты трубопроводами ТЭС) и парового котла т к  [c.187]

Наряду с разрушением металлических конструкций, вызываемых указанными выше причинами, нередко наблюдается износ металлических изделий из-за постепенного их истирания. Такое разрушение металлической поверхности называют эрозией металлов. Не всегда удается разделить явления коррозии и эрозии металлов. В особенности это трудно сделать в условиях эксплуа-тацу.я машин и аппаратов в химической промышленности, когда процессы коррозии и эрозии часто протекают совместно, например при работе мешалок, насосов, трубопроводов и др. Поэтому предметом научной дисциплины разрушение металлов является изучение комплекса вопросов физико-химического и механического разрушения металлической поверхности.  [c.7]

При более значительных скоростях движения воды, превы-шаюш,пх скорости, приведенные на кривой (рис. 45), наблюдается сильное разрушение металла вследствие комплексного явлении коррозии и эрозии. Указанный внд разрушения, известный иод названием коррозионной эрозии, возникающий вследствие механического воздействия агрессивной среды на поверхностные слои металла, покрытые продуктами коррозии или пассивированные, часто встречается в химической промышленности при эксплуатации насосов, трубопроводов и тому подобного оборудования, где имеет место воздействие на металл быстродвижущихся потоков жидкости, жидких капель или пара.  [c.81]

В Советском Союзе эпоксидные смолы применяются в основном в виде лаков для защиты от коррозии емкостей, трубопроводов, цистерн и др. Нашей промышленностью освоены различ-m,ie марки эпоксн.тных смол, известных под маркаеш Э 1,-Г), ЭД-6, ЭД-1, 3, ЭД-15, Э-40, Э-41, Э-400 и различающихся молекулярных весом, физико-механическими свойствами, адгезией, типом от-вердителя и др. Некоторые смолы отверждаются без нагрева (холодная сушка) или требуют незначительного нагрева.  [c.407]

Графики напоров, построение которых дано на рис. IX—2 и IX—3, показывают изменение по длине трубопровода полного напора потока и его составляющих. Линия на.пора (удельной механической энергии потока) строится путем последовательного вычитания потерь, нарастающих вдоль потока, из начального напора потока (задаииого пьезометрическим уровршм в питающем ре-  [c.230]

Сеть, на которую работает насос, может представлять простой или сложный (разветвленный) трубопровод, а также включать в ряде случаев гидродвигатели, преобразующие гидравлическую энергию, сообщенную потоку насосом, в полезную механическую работу.  [c.408]

Соединения элементов сосудов и трубопроводов, содержащих жидкости или газы, должны удовлетворять условиям плотности (герметичности). Для этого контактирующие поверхности механических соединений должны быть сжаты AaBJieHneM, сугцественно превышающим давление среды.  [c.56]

Различают прямые и косвенные коррозионные потери. Под прямыми потерями понимают стоимость замены (с учетом трудозатрат) прокорродировавших конструкций и машин или их частей, таких как трубы, конденсаторы, глушители, трубопроводы, металлические покрытия. Другими примерами прямых потерь, могут служить затраты на перекраску конструкций для предотвращения ржавления или эксплуатационные затраты, связанные с катодной защитой трубопроводов. А необходимость ежегодной замены нескольких миллионов бытовых раковин, выходящих из строя в результате коррозии, или миллионов прокорродировавших автомобильных глушителей Прямые потери включают добавочные расходы, связанные с использованием коррозионно-стойких металлов и сплавов вместо углеродистой стали, даже когда она обладает требуемыми механическими свойствами, но не имеет достаточной коррозионной устойчивости. Сюда относятся также стоимость нанесения защитных металлических покрытий, стоимость ингибиторов коррозии, затраты на кондиционированле воздуха складских помещений для хранения металлического обо рудования. -Подсчитано, что применение соли для борьбы с обле-  [c.17]

Работоспособность оборудования (трубопроводы, сосуды, аппараты и др.) зависит от качества проектирования, изготовления и эксплуатации. Качество проектирования, в основном, зависит от метода расчета на прочность и долговечность, определяется совершенством оценки напряженного состояния металла, степенью обоснованности критериев наступления предельного состояния, запасов прочности и др. В области оценки напряженного состояния конструктивных элементов аппарата к настоящему времени достигнуты несомненные успехи. Достижения в области вычислительной техники позволяют решать практически любые задачи определения напряженного состояния элементов оборудования. Достаточно обоснованы критерии и коэффициенты запасов прочности. Тем не менее, существующие методы расчета на прочность и остаточного ресурса тр>ебуют существенного дополнения. Они должны базироваться на временных факторах (коррозия, цикличность нагружения, ползучесть и др.) повреждаемости и фактических данных о состоянии металла (физико-механические свойства, дефектность и др.).  [c.356]


Анализ отказов нефтяного и нефзтегазопрошолового обор(удо-вания позволил явить их основнь 0 причини к ним относятся заводские дефыкти, включая дефекты заводских оьарних швов дефекты монтажа механические повреждения оборудования и труб при их транспортировке повреждения подземных трубопроводов сельскохозяйственными машинами перенапряжения, вызванные отклонениями от требований проекта либо ошибками, допущенными при проектировании нарушение режима эксплуатации коррозия и коррозионная усталость оборудования.  [c.25]

Водородное растрескивание тройника трубопровода 0720 х 18 мм, сооруженного из труб фирмы УаПпгес, произошло после шести лет эксплуатации. Механические испытания металла из очага разрушения показали, что его прочностные свойства соответствуют техническим условиям. В то же время вследствие нано-дороживания относительное сужение уменьшилось более чем на 30%. Металлографические исследования позволили установить, что водородные блистеры зарождались на границах матрица-неметаллические включения и располагались по всему сечению стенки тройника. При этом их максимальная концентрация наблюдалась в середине стенки. Данное явление можно объяснить повышенной концентрацией неметаллических включений в центральной зоне листа вследствие специфики изготовления проката. В дальнейшем, по мере накопления водорода, блистеры сливались между собой или с поперечными трещинами, пронизывая все сечение металла. Значительное давление водорода в расслоении привело к возникновению разрушающих напряжений в наружных слоях металла стенки и к развитию поперечных трещин с последующей разгерметизацией участка трубопровода (рис. 12г). Водородное растрескивание металла с образованием сквозного дефекта в нижней части тройника явилось следствием его эксплуатации в условиях застойной зоны при отсутствии Э(()фективного ингибирования.  [c.39]

Наряду с коррозионными повреждениями газопромысловых металлических конструкций наблюдаются их механические разрушения, которые в большинстве случаев происходят при опрессовке трубопроводов и оборудования и обусловлены их несоответствием техническим условиям на поставку. Разрушение трубопровода 0219x16 мм из стали 20 отечественной поставки произошло при его опрессовке вследствие наличия в металле трубы большого количества расслоений, возникших при прокатке металла в местах неметаллических включений. Подобное разрушение трубопровода 0168x9 мм, сооруженного из импортных труб (Испания), также было вызвано наличием в стали неметаллических включений и заводских дефектов (закаты и риски). Трещины, возникшие поперек сварного шва крана фирмы Growe при опрессовке, были инициированы дефектами металла сварного соединения (поперечные трещины и цепочка пор), а также охрупченным состоянием основного металла, содержавшего большое количество сульфидов.  [c.45]

По механическим свойствам металл трубопровода соответствовал требованиям нормативных документов. При испытаниях образцов металла новых труб на водородное расслоение по методике NA E ТМ 0284-96 (база испытаний — 96 ч) в образцах образовывались трещины, характерные для водородного расслоения. С учетом опыта эксплуатации ОНГКМ было сделано заключение, что дефекты, приведшие к разрушению трубопровода регенерированного газа, могут возникнуть в течение 6-8 месяцев даже в трубах, стойких к сероводородному растрескиванию, в отсутствие ингибирования и при наличии  [c.48]

После 10 лет эксплуатации произошла разгерметизация трубопровода 0720x10 мм Газораспределительная станция-1-Сакмарская ТЭЦ. Трубопровод протяженностью 9,7 км, предназначенный для транспортировки очищенного природного газа под давлением 1,2 МПа, сооружен из труб производства Челябинского трубного завода (сталь ВСт Зсп). Повреждение трубы представляло собой разрыв металла П-образной формы с основанием, располагавшимся почти параллельно (под углом -20 ) оси трубопровода. Общая длина линии разрыва составляла -2700 мм. Вдоль линии разрыва выявлены три характерные зоны металла 1 — зона с первичной продольной трещиной длиной - 1000 мм без явных признаков пластической деформации. Трещина проходила по поверхности трубы с механическими повреждениями (задиры и вмятина) под углом - 20° к оси трубопровода 2 и 3 — зоны с участками долома, располагавшимися под углом 40-50° к поперечному сечению трубы и направленными в одну и ту же сторону относительно первичной трещины. В зоне 1 находились окисленная поверхность шириной от 7,7 до 8,3 мм, то есть до -90% толщины стенки трубы, и поверхность долома шириной 0,9-1,5 мм по всей длине продольной трещины. Отмечено, что увеличение угла между линией разрыва металла и осью трубы произощло в местах локализации концентраторов напряжений, а именно на концах задира, который явился очагом зарождения исходной трещины. На поверхности трубы в области зарождения трещины и вблизи нее зафиксированы многочисленные механические повреждения металла в виде групп задиров (бороздок) и отдельных вмятин. Размеры задиров длина от 48 до - 1000 мм, глубина — от 0,8 до 3,0 мм. Размеры вмятин длина — от 130 до 450 мм, ширина — от 75 до 130 мм, глубина — от 5 до 25 мм. Наиболее протяженные задиры и самая крупная вмятина располагались вдоль предполагаемой линии зарождения разрыва. Характер задиров  [c.56]

Образцы металла в состоянии поставки, идентичные по химическому составу, термомеханической обработке и механическим свойствам металлу контролируемого аппарата или трубопровода, в среде NA E выдерживают от О до 720 ч при постоянной нагрузке, эквивалентной величине рабочих напряжений, характерных для данной конструкции. При этом в металле накапливаются микроповреждения. Затем образцы дорывают в той же среде при медленном растяжении со скоростью деформирования не более 2-10 с и определяют величину относительного сужения отражающую сопротивляемость стали сероводородному растрескиванию.  [c.124]

Оборудование и трубопроводы сероводородсодержащих месторождений испытывают механические нагрузки, которые, как правило, не превышают 0,5ад 2. то есть ресурс коррозионно-механической прочности металла не реализуется почти наполовину. Принимая во внимание этот факт, а также данные анализа отказов и изменения свойств бездефектного металла трубопроводов, представляется нецелесообразной эксплуатация оборудования в случае уменьшения более чем в два раза сопротивляемости металла сероводородному растрескиванию. В соответствии с этим шкалу времени предварительной выдержки образцов в среде NA E совмещают со шкалой планируемого срока эксплуатации трубопровода (рис. 34).  [c.124]


Смотреть страницы где упоминается термин Трубопроводы механический : [c.203]    [c.343]    [c.273]    [c.409]    [c.100]    [c.76]    [c.88]    [c.8]    [c.8]    [c.10]    [c.22]    [c.33]    [c.5]    [c.50]    [c.40]    [c.57]    [c.85]   
Тепловые электрические станции (1967) -- [ c.218 ]



ПОИСК



Влияние пластической деформации на механические свойства и работоспособность сталей для котлов и трубопроводов

Воздействие эксплуатационных механических нагрузок на стали для паровых и водогрейных котлов и трубопроводов

Единицы механических велиДавления для арматуры и соединительных частей трубопроводов

Коррозионно-механическая прочность и стойкость трубопроводов нефтяных и газовых промыслов

Коррозионно-механическая прочность стальных трубопроводов и штанг

Механический расчет трубопровода

Отдельные конструктивные требования к сварке трубопроводов. yl Расчет трубопроводов на механическую прочность Определение толщины стенки и допускаемых давлений

Прочность алюминиевых сплавов механическая арматуры трубопроводов

Прочность арматуры трубопроводов Расч механическая — Характеристик

Сталь Механическая прочность Характеристика для деталей арматуры и соединительных частей трубопроводо

Трубопровод механические характеристики материалов

Формирование структуры и ее влияние на механические свойства металла шва при сварке монтажных стыков неповоротных трубопроводов в условиях низких температур



© 2025 Mash-xxl.info Реклама на сайте