Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разреженные газы

Если Af велико, то Др/р 0 и самопроизвольное повышение давления в соответствии со вторым законом термодинамики отсутствует, Если же рассматривать сильно разреженный газ или очень малый объем, в котором содержится, например, всего 100 молекул, то Др/р=1/10, В таком объеме наблюдаются заметные самопроизвольные пульсации давления (в среднем на 10 % от среднего), а следовательно, второй закон термодинамики нарушается, Поэтому учитывать флуктуации нужно лишь в том случае, когда число частиц в рассматриваемой системе мало. Но для та-  [c.28]


При экспериментальном определении величин к а Я в принципе требуется измерить параметры состояния системы, которая находится в тепловом равновесии при температуре 273,16 К и для которой можно написать уравнение состояния в явном виде с единственным неизвестным параметром к или Я. Такую систему представляет собой реальный газ в пределе низких давлений. До последнего времени наиболее точные экспериментальные значения для к в Я получались методом предельно разреженного газа.  [c.26]

Пограничный слой акустический 104, 105 Предельно разреженного газа метод 26  [c.444]

Режимы движения множества частиц в турбулентной среде. При очень низкой плотности частиц, когда число столкновений между частицами пренебрежимо мало по сравнению с числом столкновений со стенкой, режим течения аналогичен течению разреженного газа. По аналогии можно записать напряжение сдвига на твердой стенке в виде  [c.234]

Составляющие выделяются по результатам изучения системы различными физико-химическими методами и обоснованием их Индивидуальности служит лишь модель микроскопического строения отдельных фаз. Так, в разреженных газах составляющими считаются молекулы и атомы, а при высоких температурах также. электроны и ионы. В твердых и жидких органических веществах структурными единицами являются обычно молекулы, а, например, у галогенидов щелочных металлов — положительные и отрицательные ионы соответствующих элементов. Металлические расплавы и растворы по одним моделям считают состоящими из атомов, а по другим — из положительных ионов и электронов.  [c.16]

Введенная таким способом абсолютная, т. е. независящая от свойств веществ, из которых состоят подсистемы, термодинамическая темпера гура Т с точностью до постоянного множителя совпадает с постулированной ранее ( 2) эмпирической температурой, если последнюю измерять газовым термометром с предельно разреженным газом (см. ниже).  [c.53]

В 1895 г. немецкий ученый К. Рентген, изучая электрический разряд в разреженных газах, обнаружил новый, никому не известный до тех пор вид излучения. Это излучение самим Рентгеном было названо Х-лучами . В дальнейшем оно стало называться в честь первооткрывателя рентгеновскими лучами.  [c.157]

Графики зависимости и и х от со для разреженных газов изображены на рис. 11.6.  [c.272]

Однако получение дополнительной информации из измерений показателя преломления вблизи линии поглощения требует более подробного обсуждения. Заметим, что исследование зависимости п(Х) в разреженных газах и парах металлов представляет наи-  [c.151]


Имеются ли какие-либо физические основания для того, чтобы сильно конденсированное ядерное вещество можно было уподобить разреженному газу Или, иначе говоря, может ли ядерное взаимодействие нуклонов ослабнуть настолько, что ядро будет похожим на разреженный газ  [c.178]

При этом в одном и том же состоянии (на одном энергетическом уровне) может находиться не более двух протонов, различающихся лишь направлением спина. Это же относится и к нейтронам. Протоны и нейтроны в ядре обладают своим собственным набором воз-можны.ч состояний. Такая система микрочастиц, подчиняющаяся принципу Паули и полностью заполняющая все низшие энергетические уровни, называется вырожденным ферми-газом. В вырожденном ферми-газе, несмотря на сильное ядерное взаимодействие между нуклонами, столкновения нуклонов запрещены, и они ведут себя так, как если бы взаимодействие между ними было слабым. В самом деле, нуклон I мог бы испытать столкновение с некоторым нуклоном 2 и передать последнему часть своей энергии и импульса. При этом нуклон 2 перешел бы на более высокий свободный энергетический уровень, а нуклон У в соответствии с законом сохранении энергии должен был бы перейти на более низкий энергетический уровень (рис. 55). Однако все нижележащие уровни согласно принципу Паули имеют ограниченное число мест, и все они заняты, поэтому нуклон 1 не может перейти на занятые нижние уровни. Это означает, что соударения нуклона / с нуклоном 2 не произойдет, говорят, что оно запрещено принципом Паули. Таким образом, частицы вырожденного ферми-газа будут очень редко испытывать столкновения между собой, т. е. вырожденный ферми-газ в этом отношении напоминает разреженный газ с редким столкновением частиц. Эти соображения и дают основание для аналогии ядра с вырожденным ферми-газом.  [c.179]

Весьма слабый термомеханический эффект должен, строго говоря иметь место и в обычных жидкостях аномальным у гелия II является боль шая величина этого эффекта. Термомеханический эффект в обычных жидко стях представляет собой необратимое явление типа термоэлектрического эф фекта Пельтье (фактически такой эффект наблюдается в разреженных газах см. X, задача I к 14). Такого рода эффект должен существовать и в гелии II, но в этом случае он перекрывается значительно превосходящим его описанным ниже другим эффектом, специфическим для гелия 11 и не имеющим ничего общего с необратимыми явлениями типа эффекта Пельтье,  [c.710]

Опыт показывает, что при использовании в качестве источника света свечения разреженного газа длина когерентности для отдельных спектральных линий этого газа не превышает нескольких десятков сантиметров. Лазерные источники света (см. гл. ХЬ) позволяют наблюдать интерференцию при разности хода в несколько километров. Однако практический предел разности хода, при которой возможно наблюдение интерференции, ограничивается уже не длиной когерентности лазерных источников света, но трудностями создания стабильной интерференционной схемы подобных размеров и неоднородностью земной атмосферы.  [c.93]

Разобранные примеры наглядно показывают, насколько чувствителен общий вид функции 7 (т) к особенностям спектральной плотности. Это делает ясным возможность использования кривой видимости для анализа спектрального состава излучения. Впервые такой способ был применен Майкельсоном, и ему удалось установить, что почти все спектральные линии в излучении разреженных газов состоят из нескольких, тесно расположенных компонент, которые не разрешались обычными спектральными приборами.  [c.103]

Для дифракционной решетки обычно наблюдают спектры второго или третьего порядков, т. е. т = 2 или 3. В соответствии с этим дисперсионная область ДА, = Х/2 или А./3 очень велика. В этом — огромное преимущество дифракционной решетки, которая позволяет анализировать даже белый свет, т. е. очень обширный спектральный интервал (в тысячи ангстремов), тогда как пластинка Люммера—Герке, например, не дает уже отчетливых максимумов, если падающий на нее свет представляет спектральный интервал, превышающий один ангстрем. Поэтому интерференционные спектроскопы пригодны только для анализа очень однородного света, например для спектральных линий, испускаемых разреженными газами. Они оказывают неоценимые услуги при анализе таких линий, позволяя устанавливать наличие нескольких компонент в этой линии (тонкая структура), оценивать ширину линии, наличие изменений (расщеплений) под действием внешних причин (например, эффект Зеемана) и т. д.  [c.218]


Наконец, следует упомянуть, что во всех газовых источниках света мы всегда имеем дело со светящимися атомами газа, летящими с довольно большими скоростями по всем направлениям (скорости от 100 м/с до 2 км/с в зависимости от молекулярного веса газа и его температуры). Вследствие допплеровского смещения спектральные линии оказываются расширенными. При значительном разрежении газа, когда столкновения между светящимися атомами и окружающими частицами сравнительно редки, явление Допплера служит главной причиной, определяющей ширину спектральной линии. Наблюдение уширения спектральных линий в указанных условиях также является подтверждением эффекта Допплера. Удалось установить, например, что при охлаждении такого источника жидким воздухом ширина линий уменьшалась соответственно уменьшению средних молекулярных скоростей.  [c.440]

Вынуждающая сила. Вынужденные колебания электрона возникают под действием световой волны, распространяющейся в среде. Магнитная составляющая этого поля оказывает лишь малое действие, ибо магнитное поле действует только на движущийся заряд (см. упражнение 211). Поэтому во всех практических задачах можно ограничиться учетом действия лишь электрического поля волны ). Мы принимаем, таким образом, что действие световой волны определяется напряженностью электрического поля, т. е. на электрон действует сила еЕ, где Е Eq os oi — поле волны. Это справедливо только тогда, когда можно пренебречь действием окружающих молекул, также поляризованных приходящей световой волной. Такое допущение справедливо для разреженных газов, где расстояние между молекулами среды велико. Для газов, находящихся под значительным давлением, для жидкостей или твердых тел необходимо учитывать это влияние, что поведет к изменению выражения для силы, действующей на электрон (см. ниже).  [c.552]

Указанная причина затухания может играть главную роль для очень разреженных газов и меньшую для жидких или кристаллических тел, особенно при низких температурах, когда осцилляторы этих тел расположены так, что образуют вполне однородную среду.  [c.569]

Уже неоднократно указывалось, что идеальное монохроматическое излучение представляет собой фикцию и что в реальных случаях излучение всегда соответствует некоторому интервалу длин волн. Правда, излучение разреженных газов, поставленных в специально благоприятные условия, может довольно близко подходить к этому воображаемому случаю так, наблюдаются спектральные линии , в излучении которых представлены со сколько-нибудь измеримой интенсивностью длины волн, заключенные в интервале, не превышающем нескольких тысячных ангстрема. Еще более монохроматично излучение оптических квантовых генераторов, но и здесь энергия сосредоточена в конечном, хотя и очень малом спектральном интервале (см. 228). В большинстве же случаев излучение атомов гораздо сильнее отличается от монохроматического и представляет собой набор излучений, длины волн которых варьируют в пределах нескольких сотых и. даже десятых ангстрема. При повышении давления пара линии излучения  [c.571]

Радиометрические действия возникают в разреженном газе вследствие разности температур освещенной и неосвещенной сторон крылышка. Молекулы газа, остающиеся в баллоне, отражаются от более теплой стороны с большей скоростью, и вследствие отдачи крылышки стремятся повернуться в том же направлении, что и под действием светового давления. Радиометрическое действие уменьшается, если применять очень тонкие металлические крылышки для уменьшения разности температур и увеличить разрежение газа в баллоне. Когда свет направлен на блестящее крылышко, то световое давление должно быть приблизительно в два раза больше, че.м при воздействии света на зачерненное крылышко. Наоборот, радиометрическое действие больше при освещении черного крылышка, ибо при этом больше нагревание последнего. В опыте Лебедева действительно наблюдалось примерно вдвое большее действие  [c.662]

Каждая такая спектральная линия не представляет собой, однако, излучения строго определенной длины волны, а является, как уже не раз упоминалось, излучением в очень узком спектральном участке, в котором энергия распределена так, что интенсивность быстро падает от центра к краям. Измерение ширины спектральной линии (см. 158) показывает, что в излучении разреженного газа величина этого участка нередко ограничена сотыми и даже тысячными долями ангстрема. Однако условия возбуждения могут заметно влиять и на эту величину, равно как и на положение центра (максимума) спектральной линии. Внешнее электрическое (или магнитное) поле вызывает расширение (или даже расщепление) спектральной линии, а такие внешние поля (особенно электрические) могут в условиях газового разряда обусловливаться высокой концентрацией ионов в разряде и достигать заметной величины столкновение светящегося атома с соседними во время процесса излучения также ведет к уширению линии й тому же ведет и самый факт теплового движения атома вследствие эффекта Допплера. В специальных условиях, например при мощных разрядах, сопровождающихся сильной ионизацией, или при большой плотности газа эти искажения могут достигать значительной величины. Однако  [c.712]

Уширение линий, обусловленное взаимодействием излучающих атомов со средой, в сильной степени зависит, естественно, от свойств этой среды и имеет совершенно различный характер в газах, жидкостях и в твердых телах. Мы разберем сравнительно простой случай разреженных газов, где взаимодействие происходит в течение сравнительно кратковременных столкновений, длительность которых значительно меньше времени свободного пробега. В таких условиях излучение будет, очевидно, иметь вид последовательности цугов, причем их длительность определяется процессами в момент столкновения.  [c.741]

В рассматриваемом случае разреженного газа контур линии может быть сильно уширен вследствие эффекта Допплера, обусловленного тепловым движением атомов. Если принять в расчет только допплеровское уширение, то согласно соотношению (22.17)  [c.741]


В предыдущих параграфах обсуждались диамагнетики и парамагнетики, представляющие собой, по существу, разреженный газ. Предполагалось, что каждый атом не зависит от других атомов, В результате этого удалось избежать усложнений, связанных с межатомным взаимодействием. В то же время данные табл. 10.1 свидетельствуют о том, что в случае твердых тел необходимо учитывать ряд дополнительных эффектов.  [c.329]

Вынуждающая сила. Вынужденные колебания электрона возникают под действием световой волны, распространяющейся в среде. Поскольку магнитная составляющая поля оказывает очень малое воздействие, так как магнитное поле влияет только на движущийся заряд, то действие световой волны определяется напряженностью электрического поля этой волны, т. е. на электрон действует сила Ее = еЕ. В первом приближении можно положить = Ео ехр ( (0 ) (или Е = Еоз П()у1), где ш — частота падающего излучения. Однако это справедливо только в том случае, когда можно не учитывать действия окружающих атомов и молекул, которые также поляризуются проходящей световой волной. Такое допущение справедливо при малой плотности изучаемого вещества, например для разреженных газов, где расстояние между частицами среды достаточно велико. Для газов  [c.90]

В кинетической теории разреженных газов, когда а Z, можно принять отсутствие экранирования частиц (молекул), а именно принять, что за время dt элементарную площадку dS достигают все частицы, находящиеся в параллелепипеде высотой W2 df l, а длина свободного пробега молекул Iq гораздо больше расстояний между hhmh(Zo Z). Такое предположение не проходит в подавляющем большинстве дисперсных смесей не очень малой концентрации, используемых, например, в виде кипящих слоев в технологических процессах. Действительно, уже при объемных концентрациях дисперсной фазы 2 0,1 расстояния между поверхностями частиц или размеры проходов между частицами становятся меньше их диаметра (I — 2а 2а) и частица не может свободно проскакивать между двумя другими. Таким образом, для не очень разреженных дисперсных смесей более характерным  [c.212]

И используем соотношение для F в разреженном газе F = = бяра/шрС, где 7 = 1 - -0,8-10 Л/а— поправочный коэффициент Каннингама. В сферических координатах с осевой сим-  [c.472]

Датчик термопарного вакууметра использует для своей работы зависимость теплопроводности разреженного газа от давления. Он содержит нагреваемую током металлическую проволочку, температура которой определяется балансом между подводимой к проволочке мощностью и отводимым по газу теплом. Эта температура измеряется термопарным термометром, который служит, таким образом, индикатором давления. Оценить верхнюю границу давлений, которые можно хорошо измерять с помощью такого датчика, если характерный диаметр сосуда в котором он заключен, имеет порядок 1 см, а теплопроводность воздуха при нормальных условиях  [c.212]

Важный вклад в решение этих вопросов был сделан в конце XIX в. при исследовании явлений, возникающих при пропускании электрического тока через разреженные газы. В опытах было обнаружено свечение стекла разрядной трубки за анодом. На светлом фоне светящегося стекла была видна тень от анода, как будто бы свечение стекла вызывалось каким-то невидимым излучением, распространяющимся прямолипс но от катода к аноду. Это невидимое излучение назвали катодными лучами.  [c.166]

При проверке соотношения (4.8) следует учитывать, что предположение об отсутствии взаимодействия между излучающими электронами справедливо лишь при исследовании разреженных газов, а также ряда веществ, в которых концентрация излучающих центров достаточно мала. При большой плотности вещества наше предположение неверно. В этом случае кроме внешнего поля Е нужно учесть еще электрическое поле, создаваемое в той точке, где находится электрон, всеми остальными электрическими зарядами. Такое рассмотрение ( а именно учет поля Лоренца ), как известно, приводит к своеобразной зависимости диэлектрической проницаемости от свойств среды (формула Клаузиуса — Мосоти). Учитывая, что г. == и проводя совер шенно аналогичные рассуждения, легко получить следующее со-  [c.143]

Для количественных измерений дисперсии в разреженных газах 4.8. Разрыв линии на экране, И парах металлов обычно проводят отображающий зависимость п от интерферометрическив измерения, я в опыте Кундта-Вуда  [c.152]

Мы не рассматриваем вопроса о движении тел в очень разреженных газах, в которых длииа пробега молекул сравнима с размерами тел. Этот вопрос по существу не является гидродинамической проблсглой и должен рассматриваться с помощью кинстичсско теории газов.  [c.441]

Опыт показывает, что когда два независимых источника света, например две свечи, или даже два различных участка одного и того же светящегося тела посылают световые волны в одну область пространства, то мы не наблюдаем интерференции и констатируем сложение интенсивностей. После изложенного в предыдущих параграфах мы не можем, конечно, считать результаты такого опыта доказательством несостоятельности волновых представлений о свете. Отсутствие устойчивой (наблюдаемой) интерференционной картины может обозначать только, что наши источники не посылают когерентных волн. Это означает, следовательно, что посылаемые источниками волны — немонохроматические (см. 12). То обстоятельство, что даже с наилучшими в смысле монохроматичности источниками (свечение разреженных газов) мы не можем получить интерференции от независимых источников, есть доказательство того, что ни один источник не излучает строго монохроматического света. Сказанное относится ко всем нелазерным источникам света.  [c.69]

Есть все основания полагать, что свет, испускаемый каким-либо атомом, сохраняет характер поляризации неизменным на протяжении времени, довольно длительного по сравнению с периодом колебания. Действительно, интерференция световых пучков (даже излучаемых не лазерами) может происходить при очень большой разности хода (до миллиона длг н волн), когда, следовательно, интерферируют между собой волны, кспущенные в начале и в конце временного интервала, охватывающего миллион колебаний. Возможность возникновения при этом интерференции доказывает, что состояние поляризации сохраняется на протяжении большого числа колебаний. Таким образом, излучение отдельных атомов может при благоприятных обстоятельствах (разреженный газ) сохранить неизменной не только начальную фазу, но и ориентацию колебаний в течение довольно длительного времени ( 10 с).  [c.380]

Для разреженных газов п близко к 1, т. е. + 2 3. Формула Лоренц—Лорентца превращается в фюрмулу  [c.560]

Для атомов некоторых веществ, например редких земель, к числу которых относится неодим (N(1) и празеодим (Рг), можно считать установленным, что оптический электрон принадлежит не к группе, расположенной в самой периферической части атома, как для большинства веществ, в частности для щелочных металлов, а к одной из внутренних групп. Такое защищенное положение оптического электрона редких земель объясняет, по-видимому, то обстоятельство, что соли этих веществ, даже введенные внутрь твердого вещества (стекло), обнаруживают очень узкие полосы поглощения, приближающиеся к полосам в спектре поглоигения изолированных атомов. Из приведенных фактов и рассуждений явствует, что вопрос о природе поглощения света легче выяснить при исследовании поглощения изолированными атомами, т. е. разреженными газами.  [c.568]

Теория и эксперимент в этом вопросе пережили длинную историю. В экспериментальном отнощении имелись и совсем наивные попытки, и попытки серьезного характера, вроде тех, которые привели Крукса к открытию особого вида явлений (радиометрических), связанных с кинетикой разреженных газов. Франклин рассматривал неудачи всех известных к его времени попыток обнаружить давление света как один из аргументов против корпускулярной теории света. Впоследствии Юнг также прибегал к этому аргументу, хотя ни Франклин, ни Юнг не имели возможности указать минимальную величину предполагаемого давления, поскольку относительно массы световых частиц нельзя было высказать никакого суждения и, следовательно, нельзя было судить, достаточна ли чувствительность крутильных весов, применявшихся для этих опытов.  [c.660]


Формула (16.6), связывающая диэлектрическую проницаемость е с величинами N и а, носит название формулы Клаузиуса — Моссотти. Если е близка к единице (например, разреженный газ), то можно заменить е + 2 в знаменателе левой части (16.6) на 3 и мы получим выражение (16.3).  [c.6]

При использовании соотношения (21.14) следует учитывать, что оно применимо лишь при выполнении предположения об отсутствии взаимодействия между излучающими электронами, что справедливо для разреженных газов и веществ, в которых концентрация излучающих центров достаточно мала. При большой плотности вещества это предположение неверно. Тогда кроме внешнего поля Е необходимо учитывать еще и электрическое поле, создаваемое в той точке, где находится электрон, всеми остальными электрическими зарядами (так называемое поле Лоренца). Учет этого поля, как известно (см. 16.1), приводит к формуле Клаузиуса — Моссотти (16.6). Если в формуле Клаузиуса — Моссотти заменить г = п , то получим формулу Лоренц — Лоренца (16.11), которую в нашем случае можно переписать в виде  [c.93]

ИЗ них являлся так называемый радиометрический эффект, открытый в 1873 г. Круксом и ошибочно принятый им за световое давление. Только расчет, проведенный Максвеллом, показал, что величина светового давления должна быть на несколько порядков меньше, чем радиометрический эффект, который возникает в разреженном газе вследствие различия в температуре освещенной и неосвещенной поверхностей крылышек. Частичное поглощение падающего света приводит к нагреванию поверхности крылышек. Молекулы газа, оставшиеся в баллоне, отражаются от более теплой стороны с большей  [c.186]


Смотреть страницы где упоминается термин Разреженные газы : [c.292]    [c.144]    [c.212]    [c.519]    [c.171]    [c.306]    [c.521]    [c.691]    [c.70]    [c.560]   
Теплопередача Изд.3 (1975) -- [ c.255 ]

Техническая термодинамика Издание 2 (1955) -- [ c.90 ]

Теплопередача (1965) -- [ c.249 ]

Основы теплопередачи в авиационной и ракетно-космической технике (1992) -- [ c.416 ]



ПОИСК



Безнапорное течение разреженного газа увлечение разреженного газа движущимися стенками

Больцмана уравнение, Ландау разреженного газа

Бразинокий В.И. Расчет параметров разреженного газа, возмущенного симметрично вращающимся в нем телом

Броуновское движение в сильно разреженном газе

Визуализация ударных волн в разреженных газах, основанная на свойствах послесвечения

Внешнее сопротивление тел в потоке разреженного газа при наличии скольжения

Внешнее сопротивление тела в потоке разреженного газа при наличии скольжения

Возникновение скачков уплотнения в сверхзвуковых течениях разреженных газов

Вывод псевдодифференциальных уравнений для разреженного газа

Вязкость разреженного газа

Газы разреженные многоатомные

Глава тринадцатая. Теплообмен в разреженных газах

Глава четырнадцатая. Теплообмен в разреженных газах

Девойно, О некоторых результатах исследования переноса тепла разреженным газом при естественной конвекции

Ерофеев, М.Н. Коган, О.Г. Фридлендер (Москва). Течение разреженного газа сквозь пористый слой

Измерение скорости ударных волн в разреженных газах

К а л и х м а н, Проблема теплообмена в разреженных газах

Костерин, Ю. А. Кошмаров, Ю. В. Осипов, Исследование течения и теплообмена разреженного газа в плоском сверхзвуковом сопле

Коэффициент вязкости объемной разреженного газа

Коэффициент сдвиговой вязкости разреженного газа

Механика разреженных газов

Накачка с использованием самостоятельного электрического разряда в разреженных газах

Напорное стационарное протекание разреженного газа по круглой трубе

О движении разреженного газа в пористых телах

Область разрежения позади тела, обтекаемого свободномолекулярным потоком разреженного газа

Обтекание стенки разреженным газом и теплообмен между ними

Особенности переноса в разреженном газе

Особенности процессов переноса в разреженном газе

Особенности течения и теплообмена в разреженных газах

Парная корреляционная функция разреженного газа

Поток тепла в разреженном газе

Предводителе в, Об аэродинамике разреженных газов и задачах теплообмена

Предельно разреженного газа метод

Представления кинетики сильно разреженных газов

Равновесное состояние разреженного газа

Различные типы течений разреженных газов

Разреженного газа течение

Разреженные газы, аэродинамик

Разреженные газы, теплоотдача

Разреженные газы. Уравнение Больцмана

Разреженный газ

Ребров, Теплообмен цилиндра при свободном движении газа в разреженном пространстве

Свободная конвекция в разреженном газе

Свободная энергия разреженного газа

Свободная энергия разреженного газа при учете влияния взаимодействия частиц

Тензор давления в разреженном газе

Теплообмен в разреженном газе

Теплообмен и гидравлическое сопротивление поперечно-омываемых пучков труб при малых числах Рейнольдса и в потоке разреженного газа

Теплообмен при полетах в разреженном газе

Теплообмен течениями разреженных газов О течениях разреженного газа вблизи стенки

Теплоотдача в потоке разреженного газа

Теплоотдача в разреженных газах

Техника сжатых и разреженных газов. Криогенная техника

Течение разреженного газа Области аэродинамики

Течения разреженных газов

Черемисин (Москва). Обтекание сверхзвуковым потоком разреженного газа решетки плоских поперечных пластин

Элементарная теория трения и теплопроводности в слое разреженного газа

Явления в сильно разреженных газах



© 2025 Mash-xxl.info Реклама на сайте