Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условия для исключения перемещений упругого

В этом разделе при помощи принципа соответствия будет проведен анализ динамических задач для вязкоупругих тел как при стационарных периодических режимах, так и при нестационарных режимах нагружения. Для того чтобы можно было непосредственно использовать упругие решения, будем предполагать, что не происходит старения материала и что поле температур стационарно или хотя бы что необратимые изменения в свойствах материала малы в течение каждого цикла нагружения или в течение времени нестационарного воздействия. Напомним дополнительные требования, состоящие в том, что конфигурация граничных поверхностей не меняется (за исключением малых перемещений) и что граничное условие в напряжениях не может смениться условием в перемещениях, и обратно.  [c.165]


Задача в постановке (3.6)—(3.8) является аналогичной тем, к которым приводят принципы виртуальной работы или минимума полной потенциальной энергии исключение составляет лишь то обстоятельство, что пробные функции перемещений и априори не удовлетворяют граничным условиям по перемещениям. В результате полная потенциальная энергия трещинного элемента увеличивается за счет члена, накладывающего условие (3.7). Принимая материал линейно-упругим, расширенный функционал получаем в таком виде  [c.191]

Отметим, что в задачах о равновесии и движении упругих тел (за исключением задачи вида II, когда заранее задаются перемещения границы) поверхность деформируемого тела, на которой задаются граничные условия, заранее неизвестна и должна быть найдена в процессе решения задачи. Однако в линейной теории упругости предполагается, что деформированная поверхность тела мало отличается от его начальной недеформированной поверхности. В этом случае, пренебрегая малыми второго порядка, можно считать, что граничные условия должны выполняться на недеформированной, а следовательно, известной поверхности (см. гл. VII т. 1). Именно так мы поступали при решении задач о простом растяжении бруса и о деформации трубы под действием заданных внутреннего и внешнего давлений.  [c.342]

Мы подчеркиваем, что, несмотря па указанную неоднозначность, зависимость деформаций от полного касательного усилия определяется единственным образом. Тем не менее чувство известной неудовлетворенности остается. Поскольку граничное волокно считается нерастяжимым, равенство нулю горизонтальной составляющей перемещений точек этого волокна является следствием не граничных условий (за исключением одной точки), а уравнений, и для устранения указанной выше неоднозначности пришлось задать горизонтальную составляющую поверхностных усилий на границе (за исключением одной точки), а не определить ее из теории. В идеализированной теории все предположения подобного сорта равноправны, но вопрос состоит в том, к чему приближается соответствующее выбранному предположению решение к решению для реального материала или к решению для идеального упругого материала со слегка растяжимыми волокнами.  [c.325]

Таким образом, одним из способов сокращения количества неизвестных при решении задач теории упругости является исключение из рассмотрения перемещений. Тогда вместо соотношений Коши в полную систему уравнений будут входить условия совместности деформаций Сен-Венана.  [c.331]

Представленное выше обсуждение ясно показало необходимость новых подходов для анализа напряжений в слоистых композитах, так как все предложенные к 1978 г. приближенные теории основываются на тех или иных предположениях относительно полей перемещений, которые приводят к неправдоподобным результатам. Поэтому были сформулированы следующие требования, которым должна удовлетворять приемлемая теория для анализа полей напряжений и перемещений в слоистых композитах 1) в общем случае все шесть компонент напряжений не равны нулю 2) выполняются условия непрерывности напряжений и перемещений на границах раздела слоев 3) справедлив принцип равновесия слоя . В соответствии с этими требованиями была разработана самосогласованная модель [31]. Этот принцип определяется следующим образом. Рассмотрим область внутри слоистого композита, расположенную произвольно, за исключением того, что она ограничивается любыми двумя параллельными поверхностями раздела слоев в композите. Требуется, чтобы расчетное поле напряжений, действующих на поверхностях произвольной области, согласно заданным граничным условиям для напряжений (в каждой точке, в смысле теории упругости), тождественно удовлетворяло условиям обращения в нуль результирующей силы и момента на тех частях внешней границы слоистого композита, которые находятся в данной области. Таким образом, каждый слой должен удовлетворять этому  [c.40]


В предыдущей главе были получены уравнения движения изотропной твердой среды (2.8), (2.9) и (2.20), выраженные через перемещения. Теоретически распространение волн напряжения в ограниченном изотропном твердом теле можно изучить, решая эти уравнения при определенных граничных условиях. Из рассмотрения отражения плоской упругой волны от плоскости раздела можно видеть, что при наличии нескольких свободных поверхностей задача не является столь простой и фактически, за исключением простейших случаев, точных ее решений не найдено.  [c.47]

Исключение деформаций и напряжений позволяет получить три дифференциальных уравнения лишь относительно перемещений (уравнения Навье). Преимущество этого подхода состоит в том, что условия совместности при этом не нужны. С другой стороны, исключение деформаций и перемещений при использовании условий совместности приводит к шести дифференциальным уравнениям лишь относительно напряжений (уравнениям Бельтрами—Мичелла). Полученные таким образом уравнения Навье и соответственно Бельтрами—Мичелла часто называют также основными уравнениями теории упругости.  [c.66]

Вспомним, что сечения деформируемого бруса в общем случае совер-/пают перемещения (линейные и угловые). Однако есть сечения, которые составляют исключение из этого правила это — сечения, к которым приложены связи. Связь ограничивает подвижность сечения в том или ином отношении независимо от условий нагружения бруса. Например, жесткая горизонтальная связь, приложенная к некоторому сечению, предопределяет неподвижность этого сечения в горизонтальном направлении (не препятствуя перемещению этого сечения по вертикали или его поворачиванию) упругая вертикальная связь, будучи приложена к сечению, позволяет утверждать, что сечение переместится по вертикали ровно настолько, насколько изменится длина связи, и т. д.  [c.50]

Таким образом, вариационное уравнение 65 = О, в интегральной форме выражающее условия равновесия деформированного тела, эквивалентно и включает в себя соответствующие дифференциальные уравнения равновесия теории упругости вместе с условиями равновесия на поверхности тела (граничными условиями). Указанные дифференциальные уравнения служат уравнениями Эйлера функционала Э. При этом если последний будет выражен только через три фукнции перемещений Э = Э (и, v, w), то, следуя по пути, показанному в примере, мы придем к уравнениям Эйлера в форме уравнений Ляме (2.44), т. е. уравнений равновесия, записанных в перемещениях. Отметим, что в этом случае при исключении из уравнения 65 = О частных производных функций би, 8v, би потребуется операция, аналогичная интегрированию по частям — переход от интеграла по объему к интегралу по поверхности по формуле Грина. На этих преобразованиях останавливаться не будем.  [c.57]

ДЛЯ рассеивания энергии необходимо относительное перемещение отдельных частей тела в этом случае прецессия вызывает периодически ускоренное движение всех частиц космического аппарата, за исключением центра масс. Устанавливая маятниковый механизм,систему с демпфирующей пружиной и массой-наконечником или диск, имеющие отличные от космического аппарата прецессионные характеристики (рис. 27), можно получить в результате две раз- личные динамические системы, перемещающиеся относительно друг друга на демпфирование относительного движения расходуется нежелательный избыток энергии. Наиболее распространенным демпфирующим устройством маятникого типа является расположенная по внешней стороне спутника изогнутая труба с движущимся внутри шаром собственная частота колебаний шара в трубе будет пропорциональна угловой скорости спутника, а вся система будет настроена на условия оптимального рассеивания энергии в широком диапазоне угловых скоростей спутника. Рассеивание энергии происходит за счет ударов, трения или гистерезиса. Иногда в подобном устройстве вместо шара используют ртуть—элемент с упругими и инерционными свойствами. Аналогичного эффекта можно добиться с помощью маятника, если подвеску его инерционной массы выполнить из упругого материала или поместить массу в вязкую среду [4, 9]. Маятник иногда располагают вдоль оси вращения на некотором расстоянии от центра масс с тем, чтобы усилить относительные перемещения, создаваемые прецессионными колебаниями (по сравнению с вариантом, когда тот же самый маятник располагается радиально от центра масс). Для демпфирования можно использовать также диск, помещенный в вязкую среду, поскольку отношения моментов инерции относительно соответствующих осей диска и космического аппарата различны. Аналогичную задачу мог бы выполнить элемент, установленный внутри спутника и вращающийся во много раз быстрее, чем сам спутник (такой элемент можно отнести к гироскопам). В принципе этот метод не отличается от предыдущих в том смысле, что он так-же основан на различии динамических характеристик указанного устройства и космического аппарата и на различии в частотах прецессии. Возникающее при этом относительное перемещение можно ограничить с помощью вязкой среды.  [c.224]


По-другому уравнения (119) могут быть получены из зависимостей (10бу путем исключения из них составляющих перемещения, наподобие того Йак в теории упругости получаются условия совместности деформаций Сен-Венана из уравнений Коши.  [c.81]

Применение общих теорем Лагранжа и Кастильяно к системам, для которых связь между внешними силами и перемещениями точек их приложения нелинейна, будь это вследствие того, что рассматриваются пластические деформации, или, как в примере предыдущего параграфа, вследствие того, что уравнения статики должны составляться для деформированного состояния, все равно наталкивается, на значите.1 ьные трудности. В нашем курсе мы ограничимся линейными упругими системами, то есть системами, элементы которых подчиняются закону Гука, сочленения осуществлены без трения и малость деформаций позволяет составлять уравнения статики для недеформированного состояния. При этих условиях, как мы выяснили в 32, перемещения и силы связаны линейными соотношениями. Легко видеть, что это относится в той же мере к изгибу и кручению, так как вёзде в этих задачах мы имеем дело с линейными функциями от сил. Исключение представляет случай продольно-поперечного изгиба там выражение для поперечного изгиба зависит от продольной силы сложным образом, через трансцендентные функции. Легко понять, в чем тут дело. При составлении дифференциального уравнения продольно-поперечного изгиба мы принимаем момент от продольной силы равным произведению силы на прогиб, то есть определяем статический фактор с учетом происшедшей деформации.  [c.336]


Смотреть страницы где упоминается термин Условия для исключения перемещений упругого : [c.357]    [c.39]    [c.199]   
Механика сплошной среды. Т.2 (1970) -- [ c.0 ]



ПОИСК



Упругие перемещения



© 2025 Mash-xxl.info Реклама на сайте