Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Молибден и его сплавы прочность соединения

При аргоно-дуговой сварке тантала и <то сплавов прочность и пластичность соединений неск. ниже свойств осн. металла. Тантал хорошо сваривается с медью, титаном, ниобием и цирконием возможна сварка с молибденом и вольфрамом.  [c.157]

Достаточной прочностью при высоких температурах обладают соединения жаропрочных сплавов, паянных припоями на основе никеля. Легирующими компонентами, способствующими повышению жаропрочности, служат хром, кремний, молибден и некоторые другие элементы.  [c.241]


Аустенитные стали имеют низкую теплопроводность и высокий температурный коэффициент линейного расширения, что обусловливает перегрев металла в зоне сварки и возникновение значительных деформаций изделия. Основные трудности сварки рассматриваемых сталей и сплавов обусловлены высокой степенью легирования и разнообразием условий эксплуатации сварных конструкций. Основная особенность сварки таких сталей — склонность к образованию в шве и околошовной зоне горячих трещин в виде как мельчайших микротрещин, так и трещин значительных размеров. Образование горячих трещин связано с формированием при сварке крупнозернистой макроструктуры. Применение методов, способствующих измельчению кристаллов, повышает стойкость шва против образования горячих трещин. Эффективным средством является создание аустенитно-ферритной структуры металла щва. Получение аустенит-но-ферритных швов достигается путем дополнительного легирования металла шва хромом, кремнием, алюминием, молибденом и др. В сварных швах изделий, работающих как коррозионно-стой-кие при температуре до 400 °С, допускается содержание феррита до 25 %. В изделиях из жаропрочных и жаростойких сталей, работающих при более высоких температурах, содержание феррита ограничивают 4—5 %. Значительные скорости охлаждения при сварке и диффузионные процессы, происходящие при повышенных температурах в процессе эксплуатации, приводят к сильному охрупчиванию металла сварных соединений жаропрочных сталей и к потере прочности при высоких темпера-  [c.334]

Процесс сварки оказывает влияние на механические и физические свойства металла в сварно.м соединении. Степень этого влияния зависит от состава металла, от применяемого метода сварки и от технологии процесса. Так, для обеспечения удовлетворительного качества шва обычную контактную сварку таких металлов, как высокопрочные алюминиевые сплавы, молибден и сплавы титана приходится вести при относительно больших давлениях, прикладываемых к свариваемым поверхностям, и высоких температурах нагрева. Это приводит к резкому снижению прочности и пластичности. металлов и ухудшению их коррозионной стойкости.  [c.263]

Порошкообразный титан входит в состав распыляемых поглотителей типа БАТИ, выполняя роль газопоглотителя, а также элемента, связывающего алюминий в соединение с низкой упругостью паров. Это позволяет не покрывать бариевое зеркало алюминием. Кроме того, ввод титана улучшает механическую прочность спека, образующегося при испарении бария. В сплаве БАТИ содержится 36—50% Т1. Порошковую смесь (в сухом виде в виде пасты) запрессовывают в никелевую обечайку. Прессование можно вести на пресс-автоматах. Вместо никеля можно использовать молибден, титан, нержавеющую сталь. Перед нанесением на детали электровакуумных приборов порошок титана вводят в состав суспензии для покрытия никелевых и молибденовых анодов используют суспензию, содержащую две части (по массе) порошка титана и одну часть лака  [c.127]


Для образцов, сваренных с молибденовой прослойкой, характерно наличие в пограничной зоне железа слаботравящейся полосы повышенной микротвердости шириной 30—50 мкм, которая, очевидно, представляет собой твердый раствор молибдена в железе. Как и в предыдущих случаях, наличие прослойки высокой твердости между молибденом и железом приводило к неудовлетворительной прочности соединения. Поскольку ванадий относится к металлам, не склонным образовывать хрупкие соединения с титаном, и одновременно легко образует твердые растворы с а-железом, было решено провести также сварку сплава ВТ5—1 со сталью через ванадиевую прослойку. Контакт между металлами в зоне сварки получился полным при весьма высокой твердости этой зоны, что свидетельствует  [c.39]

При диффузионном соединении полупроводниковых кристаллов с молибденом, покрытым золотом, серебром или никелем, функциональные зависимости — = f (р) носят гиперболический характер (рис. 7, кривая IV), указывая, что кинетика роста прочности соединения идет за счет взаимной диффузии быстродиффун-дирующих металлов покрытия в кристаллическую решетку алмазоподобных полупроводников. Применение никеля, как покрытия на молибдене, снижает температуру сварки для кремния и германия на 300 К, арсенида галлия на 450 К (рис. 8, кривая /), карбида кремния на 400 К при одинаковом давлении 39,2 МПа. Нижние асимптоты гиперболических кривых находятся для кремния, германия и арсенида галлия на уровне температуры 673 К, а для карбида кремния — 823 К. Таким образом, диффузионное соединение не образуется при температуре Тсв <С (0,Эч-0,4) даже при применении такого быстродиффундирующего металла,, как никель. Применение серебряного покрытия на молибдене позволяет снизить температуру сварки в 0,2—1,4 раза, т. е. довести ее до 773 К для кремния и 973 К для карбида кремния без изменения давления или уменьшить давление сжатия в 2—3 раза (19,6—9,8 МПа). Диффузионную сварку кремния и германия с серебряным молибденом нельзя вести выше температур соответственно 1103-и 924 К, так как при этом образуются эвтектические сплавы в месте контакта соединяемых материалов (рис. 7, область III). Между температурой сварки Тен и давлением сжатия р при ДСВ чистого кремния с посеребренным молибденом установлена эмпирическая зависимость  [c.235]

Для получения высокой окалиностойкости никель легируют хромом ( 20%), а для повышения жаропрочности — титаном (1,0—2,8 %) и алюминием (0,55—5,5 %). В этом случае при старении закаленного сплава образуется интерметаллидная у -фаза типа Nig (Ti, Al), когерентно связанная с основным у-раствором, а также карбиды Ti и нитриды TiN, увеличивающие прочность при высоких температурах. Дальнейшее увеличение жаропрочности достигается легированием сплавов молибденом и вольфрамом, повышающими температуру рекристаллизации и затрудняющими процесс диффузии в твердом растворе, который необходим для коагуляции избыточных фаз и рекристаллизации. Добавление к сложнолегированным сплавам кобальта еще больше увеличивает жаропрочность и технологическую пластичность сплавов. Для упрочнения границ зерен у-раствора сплав легируют бором и цирконием. Они устраняют вредное влияние примесей, связывая их с тугоплавкими соединениями. Примеси серы, сурьмы, свинца и олова понижают жаропрочность сплавов и затрудняют их обработку давлением. В связи с этим для повышения жаропрочности при выплавке жаропрочных сплавов необходимо применять возможно более чистые шихтовые материалы, свободные от вредных легкоплавких примесей.  [c.310]

Титановые сплавы. Соединение титана с углеродом (до 20%) образует карбид титана, обладающего высокой температурой плавления (3140°) и твердостью, и поэтому широко применяемому в твердых сплавах. Соединения технического титана с железом, марганцем, хромом, молибденом, ванадием, оловом и другими легирующими компонентами образуют титановые сплавы, обладающие повышенными прочност ныьш свойствами и лучшей обрабатываемости резанием по сравнению с титаном Химический состав промышленных титановых сплавов приведен в табл. 51 а их свойства — в табл. 52.  [c.149]


Нанесение полуколлоидных растворов на предварительно нагретую поверхность образцов или готовых изделий осуществляют с помощью обычных краскораспылителей. Температура, до которой нужно нагреть покрываемый образец, зависит от способности поверхности образца к окислению на воздухе и от состава раствора. В целях наиболее полного разложения входящих в раствор соединений нагревание образца следует производить до более высоких температур. Смачиваемость и прочность сцепления покрытия с металлом и его сплавами в значительной мере зависят от температуры и продолжительности нагревания образцов перед пульверизацией. Следуя указаниям Кука [24],Каутца [25], Азарова [26, 27 ] и Преснова [28], для достижения лучшего смачивания и прочного сцепления необходимо подвергнуть изделие такой термообработке, при которой в поверхностном слое материала образуются окислы низшей валентности. При нанесении раствора с помощью пульверизатора условия предварительной термообработки металлической поверхности дла каждого нового металла должны устанавливаться экспериментально. Например, сталь, фарфор, молибден и корунд рекомендуется нагревать перед пульверизацией до 300—500° С.  [c.24]

Сварка тантала и его сплавов. Наиболее сильный упрочнитель твердого раствора в танталовых сплавах - вольфрам. Кроме того, тантал легируют также молибденом, гафнием и рением, которые обеспечивают твердорастворное и гетерофазное упрочнение. Технология ЭЛС тантала практически не отличается от технологии сварки ниобия. Требования к сварочному оборудованию, подготовке кромок под сварку, сборка, техника сварки такие же, как и для ниобия. В связи с более высокой температурой плавления при сварке тантала той же толщины, что и ниобий, требуется применение в 2 - 3 раза больших мощностей электронного пучка. Сварное соединение нелегиро-ванного тантала, сохраняя пластичность на уровне основного металла, разупрочняется. Его прочность составляет 0,75...0,8 уровня основного рекристаллизованного металла (прочность металла шва 356 МПа, а основного металла 463 МПа). Угол изгиба в обоих случаях 180°.  [c.153]

Диффузионную сварку титановых сплавов ОТ-4 и ВТ-14 с медью М1 и бронзой БрХ08 проводят через слой молибдена или ниобия, напыленный в вакууме. С титаном указанные материалы образуют непрерывный ряд твердых растворов, тогда как с медью молибден практически не взаимодействует. Толщину слоя выбирают минимальной, исходя из возможностей технологического оборудования, так как ее увеличение приводит к снижению прочности сварного соединения.  [c.25]

Холодная сварка — способ соединения с пластической деформацией деталей без специального нагрева. Для соединения деталей на воздухе при этом способе необходима большая, а в глубоком вакууме незначительная деформация. С увеличением степени деформации пластичность металла (в частности, алюминия) падает, а прочность и пластичность его соединений повышаются (рис. 69). Холодной сваркой можно соединять медь, свинец, серебро, железо с алюминием, никелем и медью, медь со сталью 1Х18Н9Т, серебро с медью и его сплавами, алюминий с никелем, цинком, оловом, кадмием, цирконий со сталями и алюминием, а также чувствительные к перегреву молибден, титан и упрочненные алюминиевые сплавы между собой. Из-за наклепа и упругих напряжений холодной сваркой трудно сваривается железо, ниобий, а также сплавы ВТ1 и АМгб.  [c.101]

В силу большой хрупкости X. применяется в чистом виде только для электролитич. покрытия металлич. предметов, подвергающихся сильному износу (см. Хромирование). Большое применение имеет X. в многочисленных сплавах, к-рым он сообщает значительную твердость и химич. стойкость (см. Спр. ТЭ, т. II, стр. 90). Наиболее важны из них жаростойкие, нержавеющие и кислотоупорные хромистые стали (см. Сталь), содержащие часто и другие облагораживающие элементы (никель, вольфрам, молибден) и применяющиеся для изготовления изделий, от к-рых требуется химич. стойкость (химич. аппаратура) и большая прочность (броневые плиты, шарикоподшипники и т. д.). Особой твердостью отличаются применяющиеся в металлообработке сплавы, известные под названием стеллита (см.), содержащие например 50% кобальта, 30% X., 15% вольфрама и небольшие количества железа, углерода, марган-1Щ и кремния. Вместо применявшейся в химич. пром-сти кислотоупорной нержавеющей хромоникелевой стали в последнее время начинает входить в употребление также химически весьма стойкая хромистая сталь (см. Киолотлупор-ныеизделия, металлические). В электротехнике применяются благодаря малой склонности к окислению и низкому термич. коэф-ту электропроводности, в виде проволоки, ленты или полосового металла для обмоток и других нагревателей электрич. печей сопротивления, сплавы, известные иод названием хромоникеля или нихрома, содержащие 60-f-80% никеля, 10- 25% X. и колеблющиеся количества железа и марганца (см. Никель, Никелевые с п л а в ы). X. применяется также в производстве магнитных сплавов. Реже X. применяется для улучшения качеств цветных сплавов, бронз, латуней и др., в частности напр, для духовых музыкальных инструментов. О применении соединений X.—см. Хрома соединения. Хромит, Хромирование, Хромовые краски.  [c.309]

Сплавы на никелевой основе. В качестве материалов для деталей газовых турбин широко применяются сплавы на никелевой основе, упрочненные дисперсной интерметаллидной у -фазой №зТ1А1, выделяющейся в процессе технологического старения. При дополнительном легировании сплавов кобальтом упрочняющей фазой является (К1Со)зТШ. В зависимости от количества у -фазы (содержания А1 Т1) и характера легирования твердого раствора сплавы на никелевой основе обладают различными жаропрочностью и сопротивлением термической усталости (рис. 1.24 и 1.25). Повышением жаропрочности сплавов системы N1 - Сг - Т1 - А1 достигается при их легировании молибденом. Положительное влияние на длительную прочность оказывают также малые добавки бора, щелочноземельных и редкоземельных элементов. Бор, выделяясь при старении сплава в виде боридных фаз преимущественно по границам зерен, тормозит диффузионные процессы, повышая тем жаропрочность, а в ряде случаев приводит к увеличению длительной пластичности. Влияние малых добавок щелочно- и редкоземельных элементов на длительную прочность определяется их рафинирующим действием в связи с химической активностью по отношению к вредным примесям (8, РЬ, В1, 8Ь), в результате чего эти примеси связываются в тугоплавкие соединения. Кристаллохимическими исследсюаниями установлено, что у -фаза имеет параметр решетки, весьма близкий к параметру решетки твердого раствора. Чем меньше разница указанных величин, тем интенсивнее происходит распад у-твердого раствора при охлаждении на воздухе и тем большей стабильностью против температурного воздействия обладает образующаяся з фаза. Интенсивность процессов выделения у-фазы и размеры частиц за-  [c.51]


Для уменьшения термических напряжений в процессе соединения полупроводника с металлом или сплавом необходимо максимально приблизить коэффициенты термического расширения и теплопроводности. Из металлов по ТКЛР близки к полупроводникам тугоплавкие металлы (рис. 6, а) вольфрам, молибден, хром, тантал (6,6-10 К ), ниобий (7,2-10 К" ) и др. Эти металлы имеют одинаковую кристаллическую решетку — объемно-центрированную, т. е. не очень упакованную. Температуры плавления у этих металлов различны и колеблются от 2148 К у хрома до 3683 К у вольфрама, т. е, в 1,1—2,7 раза больше, чем температура плавления рассматриваемых полупроводников. У этих металлов большие энергии активации (37н-42) 10 Дж/кг и коэффициенты самодиффузии (2н- 16) X X 10 м /с, что приводит к увеличению затрат энергии на диффузионное соединение полупроводников с металлами. Эти металлы имеют высокие значения механической прочности, удельного электросопротивления они антикоррозионны.  [c.233]


Смотреть страницы где упоминается термин Молибден и его сплавы прочность соединения : [c.761]    [c.25]    [c.79]    [c.64]    [c.294]    [c.286]    [c.50]    [c.145]    [c.45]   
Технология электрической сварки металлов и сплавов плавлением (0) -- [ c.680 ]



ПОИСК



Молибден

Молибденит

Прочность соединений

Сплавы молибдена



© 2025 Mash-xxl.info Реклама на сайте