Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы Свойства механические и технологические

Влияние состава сплава на механические и технологические свойства  [c.23]

Во втором томе приведены данные по физико-механическим и технологическим свойствам черных и цветных металлов, сплавов и неметаллических материалов, методам защиты от окисления, термической и химико-термической обработке, испытаниям металлов.  [c.12]

Современная теория дислокаций не только качественно объясняет особенности прочности и пластичности различных материалов в разных условиях, но в некоторых случаях позволяет дать и количественную оценку механических и технологических свойств металлов и сплавов.  [c.4]


Понятие о легированных сталях. Легированной сталью называется такая сталь, в которую кроме углерода вводятся один или несколько других элементов, называемых легирующими, с целью улучшения ее механических и технологических свойств или получения каких-либо новых служебных свойств, не присущих углеродистым сталям. По назначению легированные стали делятся на конструкционные, инструментальные и стали и сплавы с особыми свойствами. В легированных деталях должно быть не менее 50 % железа, при меньших количествах получаются сплавы с особыми свойствами.  [c.40]

В справочнике на основании работ советских и зарубежных ученых, а также исследований автора описаны механические и технологические свойства более 70 металлов и 20 сплавов в зависимости от температуры испытания, содержания примесей и способов получения. Приведены сведения об основных физических свойствах всех известных в настоящее время металлов. Основное внимание уделено влиянию различных факторов на пластичность и хрупкость металлов, температурным зонам их. Рассмотрены вопросы о ресурсах металлов, методиках испытаний, разрушении, терминах, даны рекомендации по повышению качества металлов. Показано решающее влияние примесей и окружающей среды на их свойства.  [c.2]

С использованием методов планирования экстремального эксперимента на пластометрах были найдены оптимальные условия деформации многих трудно-деформируемых сталей и сплавов [226—228]. Эффективно применение многофакторного эксперимента на пластометре для анализа изменения реологических свойств в зависимости от переменного состава легирующих элементов. Подобная методика исследования систем состав сплава — реологические свойства позволяет создавать материалы с наилучшими сочетаниями механических и технологических свойств.  [c.68]

В первом томе приведены справочные сведения о принципах выбора, областях применения и влиянии методов обработки на служебные свойства цветных металлов и сплавов в машиностроении. Ои содержит также данные о марках, физико-механических и технологических свойствах алюминия, магния, титана, меди, свинца, олова, цинка, кадмия, благородных металлов и их сплавов, а также биметаллов, применяемых в машиностроении.  [c.4]

В третьем томе Специальные стали и сплавы дана классификация, указаны области применения, принципы выбора, приведены физико-механические и технологические свойства инструментальной, нержавеющей, теплоустойчивой, жаропрочной, тугоплавкой стали и сплавов различных марок, сплавов со специальными магнитными и упругими свойствами, высоким омическим сопротивлением, аномальным термическим расширением, а также порошковых сплавов.  [c.7]


Механические и технологические свойства полуфабрикатов. Ниже в табл. 15— 25 приведены механические свойства и другие характеристики деформируемых магниевых сплавов.  [c.140]

Физические, механические и технологические свойства титановых сплавов приведены в табл. 13—20.  [c.184]

В табл. 14—18 приведены химические составы некоторых высоколегированных коррозионностойких сталей и сплавов, их физические, механические и технологические свойства и области применения.  [c.44]

В монографии рассмотрены физические, механические и технологические свойства молибдена и его промышленных сплавов, приведены результаты исследований природы низкотемпературной хрупкости металла, его термической стабильности и радиационной стойкости. Изложены результаты работ по изучению основных способов получения монокристаллов молибдена, пластической и термической обработки монокристалличе-ского молибдена, а также по изготовлению из него i катодов ТЭП.  [c.5]

МЕХАНИЧЕСКИЕ И ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА МОЛИБДЕНА И ЕГО СПЛАВОВ  [c.37]

В промышленности чаще используют сплавы, а не чистые металлы. Сплавы отличаются обычно более высокими механическими и технологическими свойствами, чем чистые металлы.  [c.15]

В настоящее время сплав Д16 широко применяется в машиностроении. Его ценят за превосходные механические и технологические свойства и за возможность применения после естественного старения.  [c.93]

Кроме Сг и Ni, коррозионностойкие стали и сплавы дополнительно легируют ферритообразующими (Si, А1, Мо, W, V, Ti, Nb) и аустенитообразующими (N, Мп, Си, Со) элементами. Их вводят в различных количествах и сочетаниях, которые зависят от требований, предъявляемых к коррозионной стойкости, механическим и технологическим свойствам материалов. По структурному признаку, то есть в зависимости от структуры материалов и особенностей ее изменения при проведении термообработки, коррозионностойкие стали и сплавы подразделяют на следующие классы  [c.5]

Сплав ВТ6 обладает хорошими механическими и технологическими свойствами и упрочняется термической обработкой (за-  [c.383]

Основное количество магния потребляют в виде сплавов. Легирование магния алюминием и цинком повышает механические и технологические, главным образом литейные свойства сплавов, а марганец улучшает их коррозионную стойкость.  [c.363]

П. 4. Механические и технологические свойства отливок из магниевых сплавов  [c.496]

Список использованных источников информации превышает 800 наименований. В нем учтены результаты разработок ЦНИИТМАШ и других предприятий отрасли, а также стандартизованные и литературные данные по общим свойствам сталей, чугунов, сплавов и пластмасс, их химическим, физическим, механическим и технологическим характеристикам.  [c.56]

Фазовый состав бронз описывается диаграммами состояния двух основных элементов, например для оловянных бронз диаграммой Си — Sn. Структура и свойства бронз изменяются в зависимости от скорости охлаждения кристаллизующихся сплавов, вида термической обработки и характера обработки давлением. Примеси сурьмы, мышьяка, висмута, серы, цинка и фосфора отрицательно влияют на все виды бронз, понижая их механические и технологические свойства.  [c.206]

В книге рассмотрены строение металлов и сплавов, их механические и технологические свойства, вопросы металловедения, термического и термохимического упрочнения, а также способы получения и обработки заготовок литьев, давлением, сваркой, резанием и электрохимическими методами. Изложены сведения о металлокерамических, полимерных, композиционных и неметаллических материалах, применяемых в машиностроении.  [c.2]

Кремнистые латуни, содержащие не более 1% 51 при 20% 2п (для сохранения тройного твердого раствора), обладают хорошими механическими и технологическими свойствами. Свинец улучшает обрабатываемость простых латуней (при 30—35%-ном содержании цинка сплав настолько вязок, что резание его затруднительно) однако свинцовистые латуни многофазмы и не обладают коррозионной стойкостью.  [c.254]

Так, сплавы типа иллиум (66% N1 18% Сг 8—9% Си 3% У 2% А1 1% Мп, 0,2% Т1) благодаря присутствию в них значительного количества хрома по поведению в окислительных средах аналогичны нерлсавеющим сталям, например устойчивы в НПОз. Эти сплавы имеют также повышенную устойчивость в неокислительных кислотах невысоких концентраций и при не очень высоких температурах. Для улучшения механических и технологических свойств в эти сплавы иногда вводят значительное количество (до 25%) железа, что приводит к небольшому понижению их коррозионной устойчивости. Сплавы N1 — Сг при обычных температурах не обладают особыми преимуществами по сравнению с ннкельмолибдсповыыи сплавами.  [c.260]


Двойные и многокомпонентные медноцинковые сплавы — латуни являются наиболее распространенными из цветных снлавов в современной промышленности. Эти сплавы обладают достаточно хорошими механическими и технологическими свойствами и высокой стойкостью в отношении общей коррозии.  [c.164]

В табл. 12—21 и на фиг. 28—34 приведены данные о химическом составе физических, механических и технологических свойствах коррозионпостойких никелевых сплавах.  [c.273]

Рассмотрены теория упрочнения литейных алюм.иниевых сплавов, влияние комплексного легирования на структуру и свойства литейных алюминиевых сплавов различных систем. Представлены результаты исследования механических и технологических свойств современных сплавов, описаны режимы технологической обработки отливок из них. Дано технико-экономическое обоснование преимуществ применения литых деталей по сравнению с использованием механической обработки деформированных полуфабрикатов.  [c.47]

Широкое применение получили стали системы Fe — Сг — Ni без присадок и с присадками меди, молибдена, титана и ниобия. Эти стали характеризуются хорошими механическими и технологическими свойствами и обладают хорошей коррозионной стойкостью. Никель повышает пластичность стали, способствует формированию мелкозернистой структуры. Холодная деформация ведет к повышению прочности данных сталей. Однако эти стали Склонны к межкристаллитной и точе шой коррозии. Следует отметить, что хромоникелевые стали обладают более высокой коррозионной стойкостью, чем хромистые стали, поскольку йведение никеля способствует обр- зованию мелкозернистой однофазной структуры сплава, для которой характерна повышенная коррозионная стойкость.  [c.39]

Приведем перечень основных видов испытаний, которые в настоящее время используют при исследовании механических и технологических свойств металлов и сплавов статические испытания в условиях одноосного напряженного состояния испытания на ударную вязкость и вязкость разрущения пластометрические исследования испытания на статическую и динамическую твердость и микротвердость испытания на предельную пластичность и технологические испытания (пробы) испытания в условиях сложнонапряженного состояния испытания на ползучесть, длительную прочность и жаростойкость испытания на циклическую, контактную прочность, усталость н в условиях сверхпластичности высокоскоростные испытания испытания при наложении высокого гидростатического давления испытания в вакууме, ультразвуковом поле, в условиях сверхпластичности и т. д.  [c.38]

Технологические особенности изготовления полуфабрикатов. Листовая штамповка титановых сплавов. Для изготовления листов применяют следующие марки технического титана и его сплавов ВТ1-00, ВТ1-0, ОТ4-0, 0Т4-1, ОТ4, ВТ4, ВТ5-1, ОТ4-2, ВТ6, ВТ14 и ВТ15. Выбор того или иного из указанных сплавов для изготовления конструкций надо производить с учетом их механических и технологических свойств. Сплавы низкой и средней прочности (ВТ1-00, ВТ1-0, ОТ4-0, 0Т4-1, 0Т4) обладают хорошей штампуемостью в холодном состоянии. Остальные сплавы в отожженном состоянии имеют пониженную или низкую штампуемость, объясняемую неблагоприятным сочетанием механических свойств для осуществления пластической деформации. По сравнению с другими материалами эти сплавы имеют высокий предел прочности и предел текучести, высокое отношение <То,2/<Тв. сравнительно невысокие удлинение и поперечное сужение, особенно равномерные раан. и равн.)-  [c.191]

Более перспективна для разработки новых сплавов система Си—А1—Мп. Это положение основывается на ряде положительных свойств марганца как легирующего компонента. Введение марганца в алюминиевые бронзы повышает их прочностные и улучшает технологические свойства. Легирование марганцем способствует также повышению стойкости сплавов против кавитационного разрушения и наиболее полному раскислению меди в процессе выплавки бронзы. Химические составы и механические свойства бронз системы Си—А1—Mg, наиболее широко применяемых в отечественной и зарубежной промышленности, приведены в табл. I. 35. При этом следует отметить, что зарубежные сплавы системы Си— А1—Мп по составу практически не отличаются от отечественной бронзы Бр. АМц9-2. В мировой промышленности, таким образом, нашли применение сплавы, лежащие на диаграмме состояния системы Си—А1—Мп в области повышенного содержания алюминия при нижнем, ограниченном содержании марганца. В связи с этим в настоящее время преждевременно считать, что с точки зрения изыскания высокопрочных сплавов система Си—А1—Мп полностью исчерпана для дальнейших исследований. Определенный интерес представляет изучение свойств сплавов с повышенным содержанием марганца, который положительно влияет на уровень механических и технологических свойств легированных бронз. Алюминиевые бронзы с повышенным содержанием марганца, очевидно, могут найти себе применение как новые литейные и деформируемые сплавы. При этом для методически наиболее правильных изысканий необходимо более конкретное представление о медном угле диаграммы состояния системы Си—А1—Мп.  [c.86]

Легирование железом алюминиево-марганцовистых бронз способствует еще большему. повышению уровня их механических и технологических свойств. В отечественной и зарубежной промышленности достаточно широко применяются бронзы системы Си— А1—Мп—Ре(табл. I. 35). Они используются как в литом состоянии, так и после обработки давлением. Эти сплавы сочетают удовлетворительные механические свойства с хорошими антифрикционными свойствами при достаточной коррозионной стойкости. Однако из сопоставления данных табл. I. 35 следует, что бронзы системы Си—С1—Мп—Ре не отличаются разнообразием в химическом составе. В основном в мировой промышленности находят применение сплавы типа Бр. АЖМц10-3-1,5. В связи с этим следует считать, что система Си—А1—Мп—Ре является достаточно перспективной для дальнейших разработок. При этом реальным направлением изыскания более совершенных сплавов этой системы является  [c.86]


Рассмотрены физические, физико-механические и технологические свойства молибдена и его сплавов. Описаны способы получения монокристаллического молибдена, методы его обработки для изготовления катодов ТЭП и оболочек твэлов. Изложены способы 11анесения покрытий.  [c.2]

АЛ9В (сплавы на основе системы алюминий — кремний). Сплавы марок АЛ2, АЛ4, АЛ9 отличаются хорошими механическими и технологическими свойствами, а также сравнительно высокой коррозионной стойкостью.  [c.123]

Качество литейных алюминиевых сплавов определяется не только механическими свойствами, но и технологическими характернстиками жпдко-текучестью, степенью изменения механических свойств в зависимости от сечения отливки, герметичностью, склонностью к горячим трещинам н др.  [c.257]

Металлические порошковые материалы с высокими механическими и технологическими свойствами, а также обладающие релаксационной стойкостью изготавливают на основе системы из алюминия, цинка, магния и меди. Так, для деталей оптико-механических и других приборов применяют ПВ90, ПВ90Т1 и др. Эти сплавы имеют высокие механические свойства, хорошую обрабатываемость резанием и высокую релаксационную стойкость. Изделия из этих сплавов подвергают термической обработке.  [c.230]

Чистые металлы сравнительно дороги, не обеотечивают требуемых механических и технологических свойств, поэтому их применяют сравнительно редко. Металлические сплавы более выгодны, они дешевле чистых металлов, имеют лучшие механические свойства и часто обладают более ценными физическими и химическими свойствами. Металлические сплавы в большинстве случаев характеризуются и лучшими технологическими свойствами, например высокими литейными свойствами (низкая температура плавления и жидкотекучесть), лучше обрабатываются режущим Инструментом и т. д.  [c.81]


Смотреть страницы где упоминается термин Сплавы Свойства механические и технологические : [c.33]    [c.36]    [c.38]    [c.32]    [c.123]    [c.177]    [c.2]    [c.91]    [c.496]    [c.179]    [c.111]   
Краткий справочник металлиста (0) -- [ c.180 , c.220 ]



ПОИСК



189 —Механические свойства сплавов Д-16 и Д-20 — Механические свойства

Влияние состава сплава на механические и технологические свойства

Методы проверки механических и технологических свойств металлов и сплавов

Механические Технологические свойства

Механические и технологические свойства молибдена и его сплавов

Проверка механических и технологических свойств металлов и сплавов

Свойства технологические

Сплавы Механически:: свойства

Сплавы Механические свойства

Сплавы Свойства технологически

Сплавы Технологические свойства

Сплавы алюминиевые деформируемые 422 — Механические свойства 436 — Применение 424 Термическая обработка — Режимы 436 — Технологические

Сплавы алюминиевые деформируемые 422 — Механические свойства 436 — Применение 424 Термическая обработка — Режимы 436 — Технологические характеристики 436 — Химический состав

Сплавы магниевые — Механические, физические технологические и эксплуатационные свойства

Физико-механические и технологические свойства металлов и сплавов

Физико-механические и технологические свойства сплавов титана



© 2025 Mash-xxl.info Реклама на сайте