Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические Технологические свойства

Во втором томе Конструкционная сталь приведены химический состав, физические, механические, технологические свойства и области применения конструкционной углеродистой и легированной стали.  [c.7]

Какие сплавы магния применяются Укажите влияние 2п, А1, 2г, Ве и других элементов на механические, технологические свойства и структуру сплава.  [c.406]


Для улучшения механических, технологических свойств, коррозионной стойкости алюминиевые бронзы дополнительно легируют железом, никелем, марганцем и свинцом.  [c.744]

Марганец влияет положительно на механические, технологические свойства сплавов и на их жаропрочность.  [c.92]

Кислород присутствует в меди в виде закиси и неблагоприятно влияет на механические, технологические свойства меди и ее коррозионную стойкость.  [c.210]

Условия работы деталей машин отличаются большим многообразием по характеру действующих нагрузок, температурам, окружающей среде, воздействию магнитных, электрических полей, радиационному облучению и т.п. Поэтому для конкретных условий работы и деталей конструктор устанавливает необходимые требования к физико-химическим, механическим, технологическим свойствам материала деталей и показатели их эксплуатационных свойств.  [c.84]

В настоящее время в производстве черных и цветных металлов широко практикуется процесс искусственного регулирования размеров и формы зерен вследствие введения в расплавленный металл нерастворимых веществ. Этот процесс называют модифицированием, а примеси, воздействующие на структуру,— модификатора-м и. При модифицировании благодаря равномерному распределению искусственных примесей (модификаторов) по всему объему жидкого металла зерна получаются более мелкими и несколько иной формы. Такое изменение структуры металла улучшает его механические и технологические свойства.  [c.26]

Высокое Р-, малая Н , а также хорошие механические и технологические свойства обусловили широкое применение технического Ре (марки Э, ЭА и ЭАА). Низкое удельное электрическое сопротивление р и большие потери на вихревые токи не позволяют использовать указанные марки для изготовления трансформаторов и электрических машин. Для этих марок = 96—64 а1м,  [c.279]

Марочник не заменяет собой действующую нормативно-техническую документацию (ГОСТы, ОСТы, ТУ, РТМ и т. п.). Его основная цель — облегчить конструкторам, технологам, исследователям получение справочных данных об основных свойствах и характеристиках сталей, необходимых для обоснованного выбора марки материала при проектировании изделий и разработке технологии их изготовления. В соответствии с этой целью марочник содержит номенклатуру марок сталей, наиболее широко применяемых на машиностроительных предприятиях, и сведения справочного характера о химическом составе сталей, механических свойствах и твердости заготовок или готовых деталей в зависимости от размеров их поперечного сечения и режима термической обработки, примерном назначении, основных технологических свойствах и т. д.  [c.7]


Материал по каждой марке стали и сплава включает следующие данные заменитель марки стали и сплава, вид поставки, назначение, содержание химических элементов в процентах по массовой доле, температуры критических точек, механические свойства, жаростойкость, коррозионная стойкость, технологические свойства, свариваемость, литейные свойства, температурный интервал ковки и условия охлаждения после ковки, обрабатываемость резанием, прокаливаемость, флокеночувствительность, склонность к отпускной хрупкости.  [c.8]

РТМ 3—9—70. Литые конструкционные стали. Физико-механические и технологические свойства. 1970. 148 с.  [c.637]

Тип мартенсита определяет его механические и технологические свойства. Например, пластинчатый мартенсит в около-шовной зоне более склонен к образованию холодных трещин, чем пакетный. Это связано с тем, что у вершины двойниковой пластины создаются высокие плотность дислокаций и уровень микронапряжений.  [c.524]

Для изготовления деталей механизмов приборов и машин применяют различные материалы. Правильно выбранный материал в значительной мере определяет качество детали и механизма в целом. Выбор материала производится на основании их физико-механических, химических и технологических свойств и соответствия этих свойств эксплуатационным, технологическим и экономическим требованиям, предъявляемым к деталям.  [c.157]

Во втором томе приведены данные по физико-механическим и технологическим свойствам черных и цветных металлов, сплавов и неметаллических материалов, методам защиты от окисления, термической и химико-термической обработке, испытаниям металлов.  [c.12]

Глава 4. Методы исследования технологических свойств жаропрочных сплавов и испытаний их физико-механических и эксплуатационных  [c.101]

Таким образом, в зависимости от количества воды при гидролизе получают различные по составу, физико-химическим и технологическим свойствам связующие растворы, от которых зависят физико-механические свойства оболочковых форм и условия их сушки.  [c.218]

На технологические свойства разработанной стали (жидкотеку-чести, усадки, трещиноустойчивости) существенно влияют при модифицировании модификаторы на основе бора и циркония в количестве до 0,1% (см. рис. 134). Влияние титана и иттрия на этот процесс в пределах тех же концентраций незначительно. Механические свойства жаропрочной стали приведены в табл. 104.  [c.387]

Современная теория дислокаций не только качественно объясняет особенности прочности и пластичности различных материалов в разных условиях, но в некоторых случаях позволяет дать и количественную оценку механических и технологических свойств металлов и сплавов.  [c.4]

Чистые металлы находят довольно ограниченное применение в качестве конструкционных материалов. Основными конструкционными материалами являются сплавы Они обладают более ценными комплексами механических, физических и технологических свойств, чем чистые металлы.  [c.30]

Во втором издании книги А. П. Смирягина Промышленные цветные металлы и сплавы , опубликованной в 1956 г., были собраны сведения, необходимые для практической работы по изготовлению, обработке и применению важнейших цветных металлов и сплавов приведены подробные данные о их физических, механических, технологических свойствах и применении. Книга иллюстрирована диаграммами, показывающими изменение свойств сплавов в зависимости от степени деформации, температуры отжига и величины зерна, а также влияние высоких температур на свойства сплавов.  [c.7]

Марганец с никелем и медью дает аначительные области твердого раствора. На механические, технологические свойства и жароупорность никелевых и медноникелевых сплавов марганец влияет (положительно. Марганец является хорошим раскислителем, кроме ТОГО, он парализует вредное действие серы и является полезной добавкой к мельхиору, так как устраняет хрупкость после отжига при наличии в этом сплаве углерода.  [c.284]


Примеси В исмута и серы ухудшают механические, технологические свойства и по-этом у являются вредными П ри меся.ми в алюминиевых бронзах. Цинк также оказывает отрицателын ое влияиие на технологические и антиф рикщионные свойства алюминиевых бронз.  [c.313]

Материал, выбранный для изготовления детали, должен обосновываться подетальным расчетом на прочность. В основу расчета берут действующие нагрузки и механические свойства материала. В зависимости от формы детали может быть назначен один или несколько технологических процессов ее изготовления, поэтому при выборе материала важное значение приобретают и технологические свойства материала обрабатываемость резанием, свариваемость, уп-рочняемость при термообработке, линейные свойства, способность к ковке, штамповке (пластические свойства и зависимость их от температуры нагрева), способность к гибке, паянию и т. д.  [c.117]

Машипоспроительные стали и сплавы специализированного назначения характеризуются их механическими свойствами при низких и высоких температурах физическими, химическими и технологическими свойствами. Они могут быть использованы для эксплуатации и (ч обых условиях (при температурах ниже О °С, при нагреве, динамических нагрузках и т. п.).  [c.16]

Конструктивные особенности деталей из композитиюнных материалов обусловлены физико-механическими и технологическим свойствами, способами их получения. Прочностные и точностные характеристики деталей во многом зависят от их конструктивного оформления. Следует всегда стремиться к упрощению конструкции детали как по технологическим и эксплуатационным, так и по экономическим соображениям. Чем проще конструкция детали, тем дешевле технологическая оснастка, ниже себестоимость, выше производительность труда, точность и качество получаемых деталей. Габаритные размеры деталей определяют мощность оборудования (пресса, литьевой машины и т, д.). При проектировании деталей  [c.438]

Кремнистые латуни, содержащие не более 1% 51 при 20% 2п (для сохранения тройного твердого раствора), обладают хорошими механическими и технологическими свойствами. Свинец улучшает обрабатываемость простых латуней (при 30—35%-ном содержании цинка сплав настолько вязок, что резание его затруднительно) однако свинцовистые латуни многофазмы и не обладают коррозионной стойкостью.  [c.254]

Так, сплавы типа иллиум (66% N1 18% Сг 8—9% Си 3% У 2% А1 1% Мп, 0,2% Т1) благодаря присутствию в них значительного количества хрома по поведению в окислительных средах аналогичны нерлсавеющим сталям, например устойчивы в НПОз. Эти сплавы имеют также повышенную устойчивость в неокислительных кислотах невысоких концентраций и при не очень высоких температурах. Для улучшения механических и технологических свойств в эти сплавы иногда вводят значительное количество (до 25%) железа, что приводит к небольшому понижению их коррозионной устойчивости. Сплавы N1 — Сг при обычных температурах не обладают особыми преимуществами по сравнению с ннкельмолибдсповыыи сплавами.  [c.260]

Сплавы магния. Легирование магния некоторыми элементами значительно повышает его коррозионную стойкость и жаростойкость, улучшает механическую прочность, а также технологические свойства. Так, сплавы, содержащие алюминий (до 10%), пассивируются значительно лучше, чем магний так же влияет и присадка цинка (до 3%). Наиболее эффективной нрнсадкон является марганец, введение которого в магний достаточно в пределах от 1,3 до 1,5%. Его положительное влияние объясняют повышением перенапряжения водорода и образованием пленки из гидратированной окиси марганца. При добавке марганца в сплав Mg—Л1, максимум коррозионной стойкости достигается при содержании 0,5%, Мп.  [c.274]

В винипласте удачно сочетаются химическая стойкость во многих агрессивных средах со сравнптельно благоприятными физико-механическими и технологическими свойствами. Винипласт практически стоек почти во всех минеральных кислотах, за исключением сильно окислительных (азотной кислоты высокой концентрации, олеума и др.), стоек в щелочах, растворах солей любых концентраций, нерастворим во многих органических растворителях, за исключением ароматических и хлорированных углеводородов. Физико-механические свойства винипласта приведены ниже.  [c.412]

Алюминиевые бронзы хороню сопротивляются коррозии и имеют высокие механические и технологические свойства бронзы легко обрабатьпшются давлением в горячем состоянии, а ири содержании до 7 8 % А1 — и в холодном. Вследствие хороших литейных свойств из них можно получить разнообразные отливки. Однако следует  [c.352]

Ог ухудшает механические и технологические свойства Си и за. трудняет пайку, лужение и плакировку. Си, содержащий Оа, при отжиге в восстановительной атмосфере быстро разрушается ( водородная болезнь ),  [c.290]

Для улучшения механических и технологических свойств, а также антикоррозионной стойкости латуни подвергают легированию А1, N1, Мп, 8п, РЬ и другими элементами. А1, 5п, N1 и Мп увеличивают прочность и антикоррозионность 51 повышает прочность и улучшает литейные свойства РЬ улучшает обрабатываемость резанием и т. д.  [c.294]

Пластмассы получили месвойственный другим материалам темп развития. Это связано с исключительными технологическими свойствами пластмасс, а также с многообразием их физико-механических свойств. К технологическим достоинствам пластмасс относятся практически неограниченные ресурсы сырья намного меньнше капиталовложения, чем для производства металла возможность изготовления деталей в серийном и массовом производствах высокопроизводительными методами без снятия стружки с трудоемкостью, в 5... 10 раз меньшей, чем при изготовлении металлических деталей меньшие (до 5 раз) отходы и т. д.  [c.38]


Электроды группы Р осуществляют защиту зоны сварки шлаками на основе ТЮг, полевого шпата (NaoO-АЬОз- eSiOa), магнезита Mg Os, который, разлагаясь, дает большой объем СО2, но, кроме того, защитная атмосфера пополняется органическими компонентами. Электроды этой группы обладают высокими технологическими свойствами — обеспечивают высокую устойчивость горения дуги, хорошее формирование шва и отделяемость шлаковой корки, возможность сварки в любом пространственном положении шва. Кроме того, рутиловые электроды малотоксичны и обеспечивают высокие механические свойства у наплавленного металла.  [c.395]

Расширение применения современных высокопроизводительных специальных способов литья (литья под давлением, жидкой и объемной штамповки) требует увеличения производства специализированного оборудования и оснастки, в частности пресс-форм, штампов, матриц, способных надежно работать при высоких механических, ударных и термических нагрузках (700 - 760°С). Это возможно обеспечить только за счет применения высоколегированных и жаропрочных сплавов, обладающих высокими эксплуатационными и технологическими свойствами. Например, для оценки показателей качества пресс-форм и штампов основным критерием является термостойкость, формостойкость и износостойкость.  [c.31]

Эвтектика Ni - NiS плавится при 645°С и вызывает горячелом-кость металла при обработке давлением эвтектика N1 - NiO и Ni -С ухудшает пластичность никеля В1, РЬ вызывают горячеломкость никеля As, Sb, Р, d резко снижают его механические, физические и технологические свойства.  [c.34]

Выбор контактола в каждом конкретном случае его использования определяется не только ею элекгрическими, физико-механическими и технологическими свойствами, но, главным образом, стабильностью свойств клеевого соединения.  [c.43]

Марганцевые латуни, кроме хороших механических и технологических свойств (обрабатываются давлением в холодном и горячем состоянии), обладают высокой коррозионной стойкостью в морской воде, хлоридах и перегретом паре Латуни ЛМц 58-2 и ЛМцА 57-3-1 применяются в основном для изготовления крепежных изделий арматуры.  [c.115]

Оловянистые бронзы обычно легируют 2о, РЬ, N1, Р. Цинк улучшает технологические свойства бронзы и удешевляет ее. Фосфор улучшает литейные свойства. Для изготовления художественного литья содержание фосфора может достигать 1%. Свинец (до 3...5%) вводится в бронзу для улучшения ее обрабатываемости резанием. Никель повышает механические свойства, коррозионную стойкость и плотность отливок, уменьшает ликвацию. Среди медных сплавов оловянистые бронзы имеют самую низкую линейнзто усадку (0,8% при литье в землю и 1,4% - в металлическую форму).  [c.116]


Смотреть страницы где упоминается термин Механические Технологические свойства : [c.581]    [c.428]    [c.221]    [c.258]    [c.349]    [c.282]    [c.177]    [c.33]    [c.90]    [c.298]    [c.85]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.390 , c.391 ]

Машиностроение Энциклопедический справочник Раздел 2 Том 4 (1947) -- [ c.128 ]



ПОИСК



1050—1150 °С — Виды поставляемого полуфабриката 311 — Марки 308 Механические свойства 309 — Назначение 308 — Свариваемость 310 Технологические свойства 310 — Химический состав 309 — Цены

158 — Механические свойства 153154—Назначение 153, 156, 158 Полосы прокаливаемости 155—157 Предел выносливости 154, 157 —Сортамент 159 — Технологические свойства 155, 157, 159 — Режимы термообработки 155, 157 — Химический состав

158 — Механические свойства 153154—Назначение 153, 156, 158 Полосы прокаливаемости 155—157 Предел выносливости 154, 157 —Сортамент 159 — Технологические свойства 155, 157, 159 — Режимы термообработки 155, 157 — Химический состав пружин 151—Динамическая прочность пружин 151 — Испытание пружин на релаксацию 151 — Коэффи

158 — Механические свойства 153154—Назначение 153, 156, 158 Полосы прокаливаемости 155—157 Предел выносливости 154, 157 —Сортамент 159 — Технологические свойства 155, 157, 159 — Режимы термообработки 155, 157 — Химический состав термообработки

160, 170, 176—189 — Механические свойства 159 — Сортамент 159—169Термообработка 171—173 — Технологические свойства

166 — Технологические параметры прослойки 178, 179 — Влияние режима сварки на механические свойства

199 — Механические свойства 202 Область применения 203, 204 — Технологические свойства 202, 203 — Физические свойства 201 — Химический состав

235 — Механические свойства 236 Назначение 235 — Технологические

235 — Механические свойства 236 Назначение 235 — Технологические свойства 237 — Химический состав

235 — Цены повышенной твердости — Виды поставляемого полуфабриката 241 Коррозионная стойкость 238 — Коэффициент линейного расширения 240 Марки 237—238 — Механические свойства 239 — Модуль нормальной упругости 240 — Назначение 237—238 Технологические свойства 240 — Химический состав 238 — Цены

240 — Марки 238 — Модуль нормальной упругости 240 — Назначение238 Механические свойства 239 — Технологические свойства 240 — Химический состав

240 — Марки 238 — Модуль нормальной упругости 240 — Назначение238 Механические свойства 239 — Технологические свойства 240 — Химический состав поставляемого полуфабриката 241 Коррозионная стойкость 236 — Марки

249 — Марки 247—248 — Механические свойства 248 — Назначение 247248 — Режимы термообработки 248 Технологические свойства 249—250 Химический состав

339 — Механические свойства 337339 — Назначение 337 — Предел ползучести 339 — 340 — Температура применения 337 — Технологические

347 — Магнитные свойства 346 — Марки 346 — Механические свойства 346 Назначение 346 — Технологические

347 — Магнитные свойства 346 — Марки 346 — Механические свойства 346 Назначение 346 — Технологические поставляемого полуфабриката 348 Магнитные свойства 347 — Марки

347 — Магнитные свойства 346 — Марки 346 — Механические свойства 346 Назначение 346 — Технологические свойства 347 — Цены

46 — Технологические свойства 48 Химический состав прокаливаемости — Влияние цементации на механические свойства 52 Коэффициент линейного расширения

50— Марки 48 — Механические свойства 51 — Предел выносливости 53 Режимы термообработки 51 — Технологические свойства

53 , 59 — Механические свойства 5657, 60—62 — Назначение 55, 59 Режимы термообработки 56, 61 — Предел выносливости 57 , 62 — Температура критических точек 60 — Технологические свойства 59, 63 — Химический состав

53 , 59 — Механические свойства 5657, 60—62 — Назначение 55, 59 Режимы термообработки 56, 61 — Предел выносливости 57 , 62 — Температура критических точек 60 — Технологические свойства 59, 63 — Химический состав ударных нагрузках — Марки 63 — Механические свойства 65, 67 — Назначение 63—64 — Предел выносливости

900—1000 °С — Виды поставляемого полуфабриката 311—Марки 306 Механические свойства 307 — Назначение 306 — Технологические свойства

Влияние гальванической обработки на механические и технологические свойства изделий

Влияние состава сплава на механические и технологические свойства

Вредные примеси и их влияние на технологические и механические свойства чугуна и стали

Жаропрочные для работы при температуре 650850 °С — Виды поставляемого полуфабриката 296 — Длительная прочность 293—294 — Коэффициент линейного расширения 294 — Марки 289290 — Механические свойства 292 Модуль нормальной упругости 294 Назначение 289—290 — Предел прочности 293—294 — Твердость 293 Теплопроводность 294 — Технологические свойства 295 — Химический

Зависимость между физико-механическими свойствами стекол и основными технологическими показателями процесса их шлифовки

Коррозионно-стойкие стали для применения в средах повышенной и высокой агрессивности для сварных конструкций, работающих в кислотах Коррозионная стойкость 259 — Коррозионные среды 260 — Марки 257258 — Механические свойства 259 Назначение 257—258 — Режимы термообработки 259 — Технологические

Коррозионно-стойкие стали для применения в средах повышенной и высокой агрессивности для сварных конструкций, работающих в кислотах Коррозионная стойкость 259 — Коррозионные среды 260 — Марки 257258 — Механические свойства 259 Назначение 257—258 — Режимы термообработки 259 — Технологические свойства 261 — Химический состав

Коррозионно-стойкие стали для применения в средах средней агрессивности для сварной аппаратуры — Виды поставляемого полуфабриката 254 Коррозионная стойкость 251—252 Марки 250—251 — Механические свойства 253 — Назначение 250—251 — Режимы термообработки 253 — Технологические свойства 253 — Химический

Листовые материалы. Методы определения механических и технологических свойств материала для установления его пригодности к листовой штамповке

Металлы — Механические свойства 181 — Технологические свойства 131 — Условные обозначения

Методы испытаний и определения механических и технологических свойств листовых материалов

Методы определения основных физических, механических и диэлектрических свойств ПО Технологические свойства прессовочных и литьевых материалов

Методы проверки механических и технологических свойств металлов и сплавов

Механические и технологические свойства карбида титана

Механические и технологические свойства машиностроительных материалов и методы нх оценки Методы механических испытаний (В. А. Брострем)

Механические и технологические свойства металлов

Механические и технологические свойства металлов и методы их определения

Механические и технологические свойства молибдена и его сплавов

Механические и технологические свойства чугуна Гини)

Механические свойства 210, 212 — Недостатки 210, 211 — Область применения 211, 212 — Технологические свойства 210, 213 — Физические свойства

Назначение, химический состав, механические свойства и технологические пробы стали обыкновенного качества

ОСНОВНЫЕ МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ В ХОЛОДНОЙ j ЛИСТОВОЙ ШТАМПОВКЕ Механические и технологические свойства листовых материалов

Основные механические и технологические свойства металлов и способы их определения

Отливки бронзовые — Механические свойства ние 123 — Технологические свойства

Проверка механических и технологических свойств металлов и сплавов

Свойства технологические

Совместимость конструкционного, технологического и вспомогательного материалов, способов пайки СП1, СП2 и ТРП с требованиями, предъявляемыми к механическим свойствам паяных соединений

Сплавы Свойства механические и технологические

Сплавы алюминиевые деформируемые 422 — Механические свойства 436 — Применение 424 Термическая обработка — Режимы 436 — Технологические

Сплавы алюминиевые деформируемые 422 — Механические свойства 436 — Применение 424 Термическая обработка — Режимы 436 — Технологические характеристики 436 — Химический состав

Сплавы магниевые — Механические, физические технологические и эксплуатационные свойства

Стали качественные углеродистые — Химический состав Механические и технологические свойства

Технологические испытания механических свойств

Технологические титановые 188, 189 — Механические свойства 189 — Технологические свойства

Технологическое обеспечение физико-механических свойств поверхностных слоев (Э.В. Рыжов, А.Г. Суслов)

Физико-механические и технологические свойства металлов и сплавов

Физико-механические и технологические свойства сплавов титана

Физические, механические и технологические свойства металлов

Характеристики легированные — Классифи нация 2.100 — Марки, состав 2.102—105 — Технологические свойства 2.120 123 — Характеристики механических свойств

Химический состав, механические, физико-химические и технологические свойства бериллиевых бронз и полуфабрикатов из них

Химический состав, физические, механические и технологические свойства меди

Шарикоподшипниковые стали нержавеющие 375—378 — Коррозионная стойкость 377 — Механические свойства 376, 377 — Технологические и физические свойства



© 2025 Mash-xxl.info Реклама на сайте