Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Длина волны пирометра

Нормальный спектральный коэффициент излучения измеряется на эффективной длине волны пирометра путем сравнения результатов измерения температуры образца пирометром, нацеленным на отверстие в образце, моделирующее абсолютно черное тело, и пирометром, нацеленным на поверхность образца.  [c.429]

Примечание. Эффективная длина волны пирометра определяется формулой оо  [c.57]


Примечание. Применение красного светофильтра в пирометрах с исчезающей нитью обеспечивает эффективную длину волны пирометра, равную (0,65 0,05) мкм.  [c.59]

Пирометры излучения, изготовляемые серийно, основываются на зависимости температуры либо от яркости раскаленного тела в лучах определенной длины волны (пирометры частичного излучения), либо от теплового эффекта излучения (пирометры полного излучения). Для разных физических тел эти зависимости при одинаковой температуре различны. Поэтому все пирометры излучения градуируются по излучению абсолютно черного тела, а при измерении температуры реальных тел в показания приборов следует вводить поправки. Если реальное тело близко по своим свойствам к абсолютно черному телу, то поправка может быть ничтожной и, наоборот, при значительном отклонении от свойств абсолютно черного тела она достигает сотен градусов.  [c.459]

Выше отмечалось, что при повышении температуры тела в соответствии с законом смещения Вина максимум энергии излучения смещается в сторону коротких волн это в свою очередь обусловливает уменьшение эффективной длины волны пирометра. Для пирометра, использующего для монохроматизации красный светофильтр,  [c.272]

Для ознакомления с устройством фотоэлектрических пирометров в качестве примера рассмотрим применяемые пирометры ФЭП-4. В пирометрах этого типа с диапазоном измерения яркостной температуры от 800 до 4000°С используется вакуумный сурьмяно-цезиевый фотоэлемент типа СЦВ-51, чувствительный к излучению только видимой области спектра. На рис. 7-4-1 представлены кривые спектральной чувствительности сурьмяно-цезиевого фотоэлемента 1 и пропускания красного светофильтра 2. Из этого графика видно, Что фотоэлемент СЦВ-51 в сочетании с красным светофильтром КС-15 реагирует на излучение с длиной волны от 0,60 до 0,72 мкм. При этом эффективная длина волны пирометра в диапазоне измеряемых температур остается практически постоянной (0,65 0,01 мкм). Вследствие этого температура, показываемая фотоэлектрическим пирометром, как отмечалось выше, будет совпадать с яркостной  [c.281]

При градуировке второго вида шкала опирается на черное тело в точке золота и выполняются прямые измерения, с использованием набора фильтров или секторных дисков с известной величиной X. При градуировке этим способом к определению длины волны предъявляются значительно более высокие требования. Рассматривать подробно воспроизведение шкалы с помощью пирометра с исчезающей нитью не имеет смысла, поскольку этот метод применяется теперь редко. Вместо этого мы рассмотрим проблему эффективной длины волны, а затем перейдем к устройству и характеристикам точного фотоэлектрического пирометра.  [c.368]


Даже если излучательная способность данной поверхности известна недостаточно хорошо или если меняется пропускание ат.мосферы на пути луча или окна, или. меняется размер самого источника, встречаются иногда ситуации, когда эти эффекты слабо зависят от длины волны. В этих случаях оказывается полезным двухцветный пирометр, или пирометр отношения. Принцип метода прост. Используя вместо функции Планка приближение Вина, достаточно точное для этих целей, можно написать  [c.384]

Другой подход при работе с пирометром отношения состоит в" том, что его рассматривают как прибор, измеряющий спектральные яркостные температуры 7 и при двух длинах волн и Я,2. В этом случае  [c.385]

Отсюда видно, что при данной относительной точности измерения Q чувствительность пирометра отношения АГ тем больше, чем сильнее различаются между собой и ч. Например, чтобы достигнуть точности 1 К при 1200 К, используя длины волн 650 и 750 нм, требуется точность измерения в 1 %, что не представляется слишком трудным. Из этого, однако, следует, что требуется такая же точность и для Я г), а этого достичь значительно труднее. Существует совсем немного реальных поверхностей, для которых относительная излучательная способность известна с погрешностью 1 % при этих двух длинах волн. Однако для полости, коэффициент излучения которой высок, но не известен точно, метод можно применить, поскольку при этих условиях изменение коэффициентов излучения с длиной волны весьма мало.  [c.386]

Метод, основанный на измерении яркостной (Т рк) и истинной температур (Г ет) исследуемого покрытия (этот метод наиболее широко применяется для длин волн, стандартизованных для яркостных пирометров).  [c.162]

При измерении температуры методом обращения следует вводить некоторые поправки. Одна из них связана с тем, что ленточная лампа обычно градуируется по оптическому пирометру в красном свете (1 = 665 нм), а наблюдаемые линии имеют другую длину волны. Для пересчета яркостной температуры, измеренной при 1 = 665 нм, к яркостной температуре при другой длине волны необходимо воспользоваться соотношением, легко получаемым из формулы Вина (5.26) и закона Кирхгофа.  [c.259]

Действие яркостных пирометров основано на использовании зависимости спектральной интенсивности излучения Д (или спектральной яркости Вх) тела от его температуры. На рис. 9.7 представлена зависимость Д (для абсолютно черного тела) от Т для трех значений длины волны в видимом участке спектра. При Я = = 0,65 мкм повышение температуры от 1000 до 2000 К сопровождается возрастанием спектральной интенсивности Д в 6,42-10 раза. Аналогичные зависимости наблюдаются и для реальных тел.  [c.184]

Для измерения яркостной температуры в видимой части спектра широко используются оптические пирометры с исчезающей нитью переменного и постоянного накала. Яркостная температура тела измеряется путем сравнения спектральной интенсивности излучения объекта измерения с интенсивностью излучения нити пирометрической лампы при одной и той же эффективной длине волны Хэ -При этом яркостная температура нити лампы устанавливается градуировкой по абсолютно черному телу (по его модели) или по специальной температурной лампе.  [c.185]

Различают две разновидности фотоэлектрических пирометров. К первой из них относятся пирометры, использующие сравнительно узкий спектральный интервал с эффективной длиной волны 7 = = 0,65 мкм (как и у оптических пирометров). Во второй разновидности фотоэлектрических пирометров используются щирокие -спектральные интервалы с различными значениями эффективной длины волны, зависящими как от спектрального состава излучения объекта измерения, так и от спектральных свойств применяемого фотоэлемента. Отсутствие в настоящее время полных сведений о значениях степени черноты тел в различных интервалах длин волн создает серьезные трудности для пересчета яркостной температуры, измеренной пирометрами этой разновидности, на действительную, поэтому такие пирометры используют главным образом для контроля температуры, когда знание действительной температуры необязательно.  [c.187]


На рис. 9.10 показана схема фотоэлектрического пирометра типа ФЭП, основанного на использовании узкого спектрального интервала с эффективной длиной волны Яэ = 0,65 мкм. Поток излучения от объекта измерения 1 через объектив 2 и диафрагму 3, одно из двух отверстий в диафрагме 7 и красный светофильтр 5 попадает на фотоэлемент 9. Наведение пирометра и фокусировка изображения объекта измерения в плоскости отверстия диафрагмы 7 контролируются визуально с помощью визирного устройства, состоящего из окуляра 5 и зеркала 4.  [c.188]

Цветовые пирометры измеряют условную цветовую температуру. Цветовая температура реального тела Тц представляет собой такую температуру абсолютно черного тела, при которой отношение интенсивностей его излучения для двух длин волн Д ,// равно отношению Д,/Д, реального тела, имеющего действительную температуру Тд, для тех же длин волн, т. е.  [c.189]

Из (9.22) следует, что если спектральная степень черноты в данном участке спектра не зависит от длины волны (ел, =ел,), то цветовая температура тела равна его действительной температуре. В этом случае цветовые пирометры не требуют введения поправок, обычных для оптических и радиационных пирометров.  [c.190]

Радиационные пирометры измеряют не действительную температуру тела 7 д. а условную, так называемую радиационную температуру Гр. Она представляет собой такую температуру абсолютно черного тела Гр, при которой его плотность потока интегрального излучения во всем диапазоне длин волн от 0 до оо равна плотности потока интегрального излучения реального тела при действительной температуре Гд. Согласно этому определению  [c.191]

Яркостная (спектральная) пирометрия основана на измерении интенсивности (яркости) излучения тел при фиксированной длине волны. Если для длины волны X интенсивность излучения тела и интенсивность излучения АЧТ равны, то температура АЧТ будет равна яркостной температуре Тя излучающего тела. С термодинамической темиературой Т связана соотношением  [c.191]

Же длине волны (обычно А,—0,65 мкм), можно, вычислив их отношение, определить температуру Т [см. (3.10)]. Именно таким образом определяется практическая шкала температур от 1337,58 до 6300 К. Такие пирометры, осно ванные на зависимости энергии излучения от температуры при неизменной длине волны, называют оптическими или фотоэлектрическими пирометрами.  [c.114]

В пирометрах полного излучения или радиационных пирометрах используется закон Стефана — Больцмана — закон пропорциональности интегральной (для всех длин волн) плотности энергии излучения абсолютной температуре в четвертой степени.  [c.114]

Температурная шкала пирометра микроволнового излучения, основанная на пропорциональной зависимости спектральной плотности энергии излучения черного тела от температуры Т в микроволновом диапазоне излучения, устанавливается для диапазона температур от 6300 до 100 000 К [20]. Отношение спектральных плотностей энергий при двух температурах — измеряемой Т и базовой То равно отношению этих температур для длин волн, больших 1 мм. В качестве базовой выбирают температуру затвердевания золота 70 = 1337,58 К.  [c.114]

Для измерения высоких температур обычно применяют пирометры. Принцип действия пирометров основан на формуле Планка — зависимости спектральной плотности энергии излучения черного тела от температуры и длины волны. Измерив плотность энергии черного тела при двух температурах — измеряемой Т и температуре затвердевания золота Го= 1337,58 К (табл. 3.1)—при одной и той 8-488 ИЗ  [c.187]

Оригинальная методика расчета излучения светящегося пламени была предложена Хоттелем и Брайтоном [Л. 106]. Эта методика основывается на измерении двух яркостных температур пламени при различных длинах волн. Измерения температур производятся с помощью оптического пирометра с красным и зеленым светофильтрами.  [c.226]

По излучению в видимой области спектра температура измерялась методом обращения спектральных линий. Способ регистрации момента обращения — визуальный. В качестве спектрального прибора использовался спектрограф ИСП-51. Локальная окраска пламени производилась сухой солью Na l (как правило, наблюдалось обращение дублета натрия другие элементы — калий, литий — применялись редко). Источником сравнения служила ленточная вольфрамовая лампа СИ-10-300, яркостная температура которой измер ялась прецизионным пирометром ОП-48. При определении температуры учитывалось наличие линзы между источником сравнения и пламенем и то обстоятельство, что эффективная длина волны пирометра отличается от длины волны, на которой ведутся измерения.  [c.188]

Если взять отношение спектральных энергетических яркостей при двух длинах волн = onst и 12= onst, то можно заметить, что это отношение будет изменяться с изменением температуры. Это изменение вызвано тем, что с изменением температуры смещается максимум излучения и соответственно изменяется соотношение спектральных энергетических яркостей для двух фиксированных длин волн. Пирометр, действие которого основано на использовании зависимости от температуры тела отношения спектральной энергетической яркости для двух (или более) фиксированных длин волн, называется пирометром спектрального отношения.  [c.59]


На рис. 7.1 приведены величины ДHv для значений 2Ь1к в области от 1 до 100. Наиболее поразительным на рис. 7.1 является наложение больших флуктуаций Ai/v на плавно меняющуюся функцию АПу. Величина этих флуктуаций обратно пропорциональна ширине полосы V, и поэтому флуктуации с увеличением частоты уменьшаются значительно медленнее, чем уменьшается Ai/v. Из рис. 7.1 ясно, что для встречающихся в практике оптической термометрии размеров полостей, длин волн и температур отличия от закона Планка малы. Например, для длины волны 1 мкм и размера полости 1 мм получаем Ai/v = 2,5 10 , что пренебрежимо мало. Однако, если используется очень малая ширина полосы, среднеквадратичная флуктуация (бi/v) перестает быть незначительной. В современной высокоточной оптической пирометрии использование ширины полосы в 1 нм и менее является обычным. Это приводит к значениям (6Н ) = 5 10 или 10 , которыми пренебречь  [c.316]

Описав свойства теплового излучения, полости черного тела, вольфрамовые лампы и эффективную длину волны, мы имеем теперь все элементы, которые требуются для того, чтобы обсудить воспроизведение МПТШ-68 фотоэлектрическим пирометром.  [c.372]

Требования к интерференционному фильтру, который определяет ширину полосы фотоэлектрического пирометра, достаточно жестки. В частности, коэффициент пропускания при длине волны далеко за пределами основного пика должен быть меньше примерно в Ю раз, чем в максимуме. Если это не выполняется, то вычисление температуры по уравнению (7.69) существенно зависит от пропускания за пределами пика, и это ведет, вероятно, к погрещ-ностям. Если используется один из приближенных методов решения уравнения (7.69), становится очень трудно учесть пропускание за пределами пика и ошибка, несомненно, возрастет. На рис. 7.35 показаны кривые пропускания трех типичных фильтров, исследованных в работе [25]. Фильтры I VI 2 можно считать пригодными для фотоэлектрического пирометра высокого разрешения, а фильтр 3 нельзя из-за того, что его пропускание за пределами пика слишком высоко. Быстрое спадание чувствительности фотокатода 5-20 с длиной волны за пределами 700 нм удобно для компенсации длинноволнового пропускания фильтров, которое в противном случае было бы непреодолимым ввиду экспоненциалыгого возрастания спектральной яркости черного тела в этой области.  [c.378]

В работах [52, 33] предложен новый метод измерения отношения излучательных способностей in situ. Здесь для измерения отношения поглощательных способностей материалов при двух длинах волн, используемых в пирометре отношения, применен лазер. Это делается с использованием спектрального пирометра, работающего на третьей длине волны, для измерения возрастания температуры образца при освещении лазером поочередно  [c.387]

В последние годы возник большой интерес к методам измерения, в которых используется избыточная информация, содержащаяся в спектре излучения нагретых тел. Принцип новых методов основан на утверждении, что если излучательная способность материала пропорциональна длине волны в степени п, то температура может быть получена из относительных измерений спектральной яркости при п + 2 длинах волн. Для п = 0 мы имеем случай двухцветного пирометра или пирометра отношения, в котором излучате,тьная способность не зависит от длины волны. Если п= и излучательная способность с длиной волны меняется линейно, требуется три длины волны. Проблема с двухцветным пирометром, как было показано, состоит в том, что для равенства излучательной способности при двух длинах волн на практике длины волн должны быть расположены рядом. С другой стороны, легко показать, что чувствительность при увеличении расстояния между длинами волн увеличивается. Подобный анализ для трехцветного пирометра показывает, что даже небольшие отличия от предполагаемого линейного соотношения между излучательной способностью и длиной волны могут приводить к большим погрешностям. Свет [81], однако, отметил, что при использовании современных компьютеров метод определения истинной температуры из измерений при т длинах волн на основе предположения, что излучательная способность является функцией п-й степени от длины волны и т>п, имеет ряд преимуществ. Они состоят в том, что избыточная информация, содержащаяся в [т—(п = 2)] измерениях, должна компенсировать недостаток точности в измерениях относительной яркости при т длинах волн. Трудности достижения высокой точности были показаны в работе Коатса [26], где был сделан вывод, что ни один из этих методов, по-видпмому, не приводит к большей точности опреде.ле-ния Т, чем точность, достигаемая пирометром на одной длине волны с использованием известной величины излучательной способности.  [c.392]

Для восприятия лучистой энергии используют различные приемники термобатареи, болометры, термисторы II т. д. Спаи термопар, чувствительные элементы болометров и термисторов хорошо зачернены с целью создания неселективности термоприемников в широком диапазоне длин волн. Однако следует заметить, что к данным, полученным радиационным методом, следует относиться с осторожностью. Необходимо учитывать, что для увеличения чувствительности метода применяют линзы и другие фокусирующие устройства кроме того, часто используют радиационные пирометры. Использование оптических элементов приводит к тому, что приемник воспринимает излучение неполно и в ограниченной области спектра. Поэтому, как оправедливо отмечено в [131], использование пределов интегрирования, показанных в формуле (6-69), не правомерно. В этом случае степень черноты интегральна лишь в пределах полосы пропускания оптической системы, т. е.  [c.164]

Цветовые пирометры могут быть выполнены по одно- и двухканальной схеме. При двухканальной схеме для измерения спектральных интенсивностей излучения /л, и /л, используют два приемника излучения (чаще всего ими являются фотоэлементы). При юдноканальной схеме отношение интенсивностей излучения /л,//я измеряется одним фотоэлементом, который поочередно освещается излучением с длиной волны Я1 и Яг- Существенным недостатком двухканальных схем является зависимость характеристик пирометра от стабильности свойств фотоэлементов каждого канала, которые с течением времени могут меняться неодинаково. Поэтому в большинстве случаев цветовые пирометры выполняются по одноканальной схеме.  [c.190]

Цветовая пирометрия (пирометрия спектрального отношения) основана на сравнении отношений интенсивности излучения для двух длин волн X, и Аг для нечерного тела и АЧТ. Если эти отношения равны, то цветовая температура Тц равна температуре АЧТ. С термодинамической температурой Тц связана соотношением  [c.191]

В видимой части спектра изменение температуры приводит к сдвигу максимума энерТии излучения в область меньших длин волн, а следовательно, и к изменению цвета тела, температура которого измеряется. Это свойство (закон смещения Вина) реализуется в цветовых пирометрах, или пирометрах спектрального отношения.  [c.114]


В цветовых пирометрах интенсивность монохроматического излучения тела измеряют при какой-либо температуре для двух участков длин волн, например, для красного и сине-зеленого участков видимой части спектра отношение этих интенсивностей зависит от температуры. Это следует из закона Вина, согласно которому максимум интенсивности излучения с увеличением температуры смещается в область более коротких длин волн. Следовательно, измерив две яркост-. ные температуры тела для разных монохроматических излучений с длинами волн Я] и Я,, можно по отношению этих температур найти так называемую цветовую температуру тела Тц. Истинную температуру тела определяют из выражения  [c.462]

На рис. 5-41 представлена зависимость энергии полного полусферического излучения светящегося пламени Е от его цветовой Тр и яркостной Т о температур. График построен для условий измерения указанных температур оптическим пирометром с эффективной длиной волны Хзфф =  [c.233]


Смотреть страницы где упоминается термин Длина волны пирометра : [c.163]    [c.260]    [c.261]    [c.65]    [c.56]    [c.319]    [c.385]    [c.387]    [c.704]    [c.189]    [c.9]    [c.462]    [c.151]   
Основные термины в области температурных измерений (1992) -- [ c.0 ]



ПОИСК



Волна длинная

Длина волны

Длина волны пирометра эффективная

Измерение высоких температур пирометра с одним интервалом длин волн

Пирометрия

Пирометры



© 2025 Mash-xxl.info Реклама на сайте