Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлы и сплавы газовая

Известно, что большинство деталей машин, соприкасаясь с горячими газа.ми, подвергается газовой коррозии, результатом чего является разрушение металлов и сплавов. Газовая коррозия существенно сокращает срок службы деталей. Жаростойкость стали или сплава зависит от непроницаемости и прочности пленки окислов, образующихся на их поверхности в процессе газовой коррозии при высоких температурах.  [c.197]


Электродуговая сварка в среде защитного газа (аргона или гелия) применяется при сваривании высоколегированных сталей, алюминиевых, магниевых сплавов, меди, молибдена и других металлов и сплавов. Газовая среда препятствует окислению сварочной ванны, благодаря чему достигается высокое качество шва.  [c.400]

Наплавка латуни. Из цветных металлов и сплавов газовым пламенем целесообразнее всего наплавлять латунь. Медь и бронзу обычно наплавляют электродуговым способом. При наплавке же латуни электродуговым способом сильно испаряется цинк. Наплавку латуни применяют в основном для создания уплотнительных поверхностей на углеродистой стали, а также на чугуне при изготовлении различных изделий.  [c.137]

В жидких металлах и сплавах растворимость газов с увеличением температуры повышается. При избыточном содержании газов они выделяются из расплава в виде газовых пузырей, которые могут всплыть на поверхность или остаться в отливке, образуя газовые раковины, пористость или неметаллические включения, снижающие механические свойства и герметичность отливок. При заливке расплавленного металла движущийся расплав может захватывать воздух в литниковой системе, засасывать его через газопроницаемые стенки каналов литниковой системы. Кроме того, газы могут проникать в металл из формы при испарении влаги, находящейся в формовочной смеси, при химических реакциях иа поверхности металл— форма и т. д.  [c.127]

Газовая коррозия новых конструкционных металлов и сплавов  [c.143]

ГАЗОВАЯ КОРРОЗИЯ НОВЫХ КОНСТРУКЦИОННЫХ МЕТАЛЛОВ И СПЛАВОВ  [c.143]

Для химической и нефтехимической промышленности характерны газовые среды, действующие весьма агрессивно на металлы и сплавы. Такими агрессивными газами являются окислы азота, сернистые соединения, хлористый водород, хлор и др.  [c.148]

Коррозия металлов и сплавов газообразными хлором н хлористым водородом при высоких температурах, как это показали работы X. Л. Цейтлина, принципиально отличается от действия других газовых сред на металлические поверхности. В зависимости от природы металла при какой-то определенной температуре начинает протекать экзотермическая реакция, приводящая к резкому повышению температуры и очень сильной коррозии. Так как скорость реакции выделения тепла превосходит скорость его отвода, то металлы в токе хлора могут сгореть.  [c.157]


Особенности механизма описываемого окислительного изнашивания были изучены в многочисленных исследованиях, проведенных под руководством Б.И. Костецкого, с помощью газового, химического, электронографического, рентгеноструктурного, термографического, электронно-микроскопического анализов образцов, испытанных в различных газовых средах и в вакууме при трении металлов и сплавов с различными механическими свойствами и сродством к кислороду.  [c.133]

Химическую сварку применяют для сваривания элементов из малоуглеродистых сталей, тонких стальных листов, чугуна, цветных металлов и сплавов. Исключительную роль при производстве сварных конструкций играют процессы газовой резки металла. Прорезы получаются за счет сгорания металла в струе кислорода.  [c.180]

Газовая сварка реализуется за счет оплавления газовым пламенем частей соединяемых деталей и прутка присадочного металла, она используется для соединения деталей из металлов и сплавов с различными температурами плавления при небольшой толщине (до 30 мм), а также для сварки неметаллических деталей. Для ее реализации не требуется источника электроэнергии. Широкое распространение имеет электродуговая сварка, при которой оплавленный (за счет электрической дуги) металл соединяемых элементов вместе с металлом электрода образует прочный шов. Для защиты от окисления шва электрод обмазывают защитным покрытием часто сварку производят под слоем флюса или в защитной среде инертных газов (аргона, гелия). Электродуговой сваркой на сварочных автоматах, полуавтоматах, а также вручную соединяют детали из конструкционных сталей, чугуна, алюминиевых, медных и титановых сплавов. Последние сваривают в среде аргона или гелия.  [c.469]

Особенностью кристаллизации металлов и сплавов под всесторонним газовым (за исключением некоторых случаев) и механическим давлением является то, что давление прикладывается к расплаву после его заливки в изложницу или литейную форму. Поэтому до воздействия давления на границе раздела расплав — изложница образуется и растет твердая корка, претерпевающая усадку, вследствие чего образуется зазор между формирующейся литой заготовкой и изложницей. Образование зазора приводит к уменьшению интенсивности охлаждения литой заготовки.  [c.28]

Как и в условиях всестороннего газового давления [54], газовая пористость в металлах и сплавах, закристаллизованных под механическим давлением, отсутствует при Р>0,35 МН/м .  [c.43]

ЛИТЫХ заготовках. Однако из этого не следует, что при кристаллизации под давлением можно изготовлять слитки и отливки из металлов и сплавов, насыщенных газами. Действительно, газовые раковины при наложении давления не образуются, но механические свойства газонасыщенного металла будут ниже, чем дегазированного и рафинированного.  [c.44]

КРИСТАЛЛИЗАЦИЯ МЕТАЛЛОВ И СПЛАВОВ ПОД ВСЕСТОРОННИМ ГАЗОВЫМ ДАВЛЕНИЕМ  [c.47]

Автоклавы лабораторного типа используют для изучения влияния всестороннего газового давления на продолжительность затвердевания, усадочные процессы, структуру и физико-механические свойства металлов и сплавов в литых заготовках простейшей формы (преимущественно в слитках). Как правило, подобные автоклавы оснащают приспособлениями и аппаратурой для измерения температуры формирующей заготовки и литейной формы (изложницы).  [c.48]

Полезное действие всестороннего газового давления заключается в усилении процессов питания, запрессовке усадочных пор и затруднении выделения газов из металлов и сплавов вовремя затвердевания.  [c.54]

А. А. Бочвар [54] подробно проанализировал влияние всестороннего газового давления на формирование раковин и пор в литых заготовках из металлов и сплавов, насыщенных газами и без газов и имеющих различный интервал кристаллизации, и установил общие закономерности.  [c.54]

Вместе с тем, как было показано выше, всестороннее газовое давление способствует ускорению затвердевания, а следовательно, изменению структуры и свойств металлов и сплавов.  [c.62]

Металлы и сплавы, залитые в форму или изложницу, охлаждаются и претерпевают усадку, величина которой зависит от состава сплава и температурных режимов литья. При отсутствии питания в слитках и отливках образуются усадочные раковины и поры. В обычных условиях литья и при всестороннем газовом давлении для их устранения используют прибыли.  [c.93]


В первом случае будет происходить разъедание поверхности (рис. 21) в результате нижеперечисленных процессов. Коррозия металлов и сплавов представляет собой их разрушение в результате химического или электрохимического действия среды. Разрушение всегда начинается с поверхности детали. Различают атмосферную, электрохимическую и газовую (химическую) коррозию.  [c.85]

Электрохимическая коррозия особенно характерна для подводных частей морских судов, установок химической промышленности, для машин при их хранении. Газовая (химическая) коррозия возникает при контакте металлов и сплавов с сухими газами или неэлектролитными теплоносителями. Типичными примерами этих процессов являются высокотемпературное окисление деталей газовых турбин, котельных топок, клапанов двигателей внутреннего сгорания.  [c.86]

Осаждение тугоплавких металлов и сплавов из газовой фазы путем термического разложения паров летучих соединений металлов требует нагрева покрываемой поверхности, зачастую до высоких температур. Это исключает возможность покрытия материалов с невысокой температурой плавления или рекристаллизации, получения пленок тугоплавких металлов при относительно низких температурах (что необходимо для ряда физических исследований) и, в известной мере, усложняет технологический процесс. Кроме того, высокие температуры осаждения покрытия способствуют интенсивной диффузии и загрязнению покрытия материалом  [c.89]

Для определения прочности и пластичности металлов и сплавов, в том числе тугоплавких и композиционных материалов на их основе, в вакууме, окислительной и защитной газовых средах при испытаниях на растяжение в интервале температур 270—3270 К и при относительной скорости от 1 до 10- с- разработана установка Микро-6 . В качестве основных образцов приняты конструкционные материалы — проволоки, ленты, фольги.  [c.139]

ГАЗОВАЯ КОРРОЗИЯ МЕТАЛЛОВ И СПЛАВОВ  [c.90]

Воздушная среда приморского влажного субтропического климата представляет собой аэрозоль природного электролита, взвешенного в газовой фазе. Поэтому для развития коррозии очень важны скорость конденсации его и испарения с поверхности металлов и сплавов при различных температурах, а также коррозионное воздействие на них морской воды.  [c.44]

Как уже отмечалось, при использовании методов тепловой микроскопии образцы исследуемых металлов нагревают в вакууме или в защитных газовых средах, что предотвращает возникновение окисных пленок на поверхности образцов и позволяет изучать и фиксировать изменения микростроения металлов и сплавов при соответствующей температуре опыта.  [c.22]

При исследовании строения и свойств металлов и сплавов в широком диапазоне температур в вакууме или в защитных газовых средах нагрев образцов до заданных температур осуществляется различными методами, которые в первом приближении можно разделить на две группы. К первой группе следует отнести способы, при использовании которых нагрев производится внешними источниками тепла, передающими тепловую энергию образцу за счет радиационного излучения или теплопроводности. Во вторую группу входят методы нагрева за счет теплового действия электрического тока.  [c.72]

Если исследуемые образцы являются плохими проводниками электрического тока (полупроводниками или диэлектриками), целесообразно использовать способы, показанные на рис. 30, а—з. При изучении температурной зависимости твердости металлических материалов методом вдавливания в поверхность образца алмазного или сапфирового индентора в нашей практике успешно применяются методы нагрева, схемы которых изображены на рис. 30, бив. Микростроение металлов и сплавов при их нагреве и растяжении в вакууме или в защитных газовых средах можно изучать при радиационном нагреве (см. рис. 30, б), а также при контактном электронагреве (см. рис. 30, д).  [c.77]

Первая серия опытов, доказывающая возможность и необходимость классификации металлов и сплавов по характеристикам способностей к схватыванию и окислению, произведена на специальной машине трения КЕ-2, которая имеет герметическую камеру и позволяет вести испытания в различных газовых средах. Испытанию при сухом трении в воздухе, кислороде, аргоне и последующему металлографическому исследованию были подвергнуты  [c.67]

Газовая сварка и резка. В качестве горючих газов при сварке используют ацетилен, пропан, бутан, пары бензина, водород и другие газы. Чаще других применяют ацетилен (С2Н2), дающий наибольшую (до 3200 °С) температуру пламени. Газовую сварку применяют главным образом для соединения тонкостенных стальных заготовок, а также заготовок из чугуна, цветных металлов и сплавов. Газовым пламенем пользуются также для резки металлов, для наплавки твердых сплавов и при ремонтных работах.  [c.272]

В последнее время в условиях газовой коррозии находят при-менешк новые конструкционные металлы и сплавы, такие, как титан, цирконий, молибден, ниобий и др.  [c.143]

Спой продуктов газовой коррозии называется окалиной. ТЬлщина слоя окалины обычно превышает 0,1 мкм. Пленки меньшей толщины, образующиеся на поверхности металлов и сплавов называются налетом.  [c.13]

Скорость газовой коррозии металлов и сплавов зависит от многих факторов. Они делятся на "внутренние" факторы, непосредственно связанные с самим металлом (состав сплава, структур , состояние поверхности, наличие напряхений), и "внешние" факторы, обусловленные средой (температура, состав среды,окоростл потока, условия нагрева и т.д.)  [c.15]

В книге рассмотрены влияние давления на критические точки некоторых металлов и сплавов, фазовые равновесия и параметры кристаллизации, а также газоусадочные процессы в сплавах и литых заготовках. Показаны особенности затвердевания, протекания усадочных процессов, формирования структуры и свойств металлов и сплавов в слитках и отливках при кристаллизации под всесторонним газовым и механическим давлением.  [c.2]


Универсальные установки для изучения прочности материалов при высоких температурах методами растяжения, микротвердости известны с 1959 г. Первая такая установка типа ИМАШ-9 служила для измерения микротвердости при растяжении и нагреве в вакууме до температуры 1570 К [ИЗ, 114, 118]. Более совершенная серийная установка ИМАШ-9-66 предназначена для оценки прочности металлов и сплавов при температурах от 300 до 1400 К в вакууме и защитных газовых средах [118, 119, 134]. Основным недостатком этих установок является применение только одного метода нагрева путем прямого пропускания через образец электрического тока низкого напряжения промышленной частоты. В последние годы показано, что при пропускании тока через образец возникает электропластический эффект уменьшения сопротивления металлов пластической деформации [84, 85, 182, 195, 196, 197, 198]. Установки типа НМ-4 японской фирмы Юнион оптикал используют радиационный нагрев образца при растяжении до 1770 К и при измерении микротвердости до 1270 К [119, 226].  [c.95]

В книге описан опыт применения ингибиторов — веществ введение которых в небольших количествах в коррозионную среду или в упаковочные материалы обеспечивает надежную антикоррозионную защиту в любых агрессивных средах. Значительное внимание уделено практике использования ингибиторов в различных отраслях техники при кислотном травлении металлов и сплавов кислотной обработке нефтяных и газовых скважин, химической очистке теплоэнергетического оборудования, в химических источниках тока. Рассмотрены теория и практика применения ингибитированных бумаг. Изложены требования предъявляемые к ингибиторам, а также некоторые экономические аспекты их использования.  [c.4]

Вместе с тем, как отмечалось выше, сушествуют нерешенные проблемы в получении таких наноматериалов традиционными методами — газовой конденсацией или шаровым размолом в связи с сохранением в них при компактировании некоторой остаточной пористости и дополнительными трудностями при приготовлении массивных образцов [1, 2, 4]. Как результат, до недавнего времени были выполнены лишь единичные работы по исследованию механических свойств наноструктурных металлов и сплавов, имеющих размер зерен около 100 нм и менее. Большинство проведенных исследований связано с измерениями микротвердости, и полученные данные весьма противоречивы. Например, в некоторых работах [320, 321] обнаружено разупрочнение при уменьшении зерен до нанометрических размеров, в то же время в ряде других работ [322, 323] наблюдали в этом случае упрочнение, хотя наклон кривых был меньше по сравнению с соотношением Холла-Петча.  [c.182]

Во втором издании (первое - в 1986 г.) рассмотрены основные положения теории коррозии металлов и сплавов. Проанализировано влияние условий эксплуатации на коррозию конструкционных сплавов. Изложены принципы создания металлических сплавов повышенной стойкости. Приведены свойства важнейших конструкционых материалов, в том числе данные по жаропрочным и жаростойким конструкционным сплавам. Указаны способы повышения коррозионной стойкости поверхностное легирование, создание металлокерамических сплавов, получение сплавов в аморфном состоянии, современные методы борьбы с газовой коррозией.  [c.160]

Коррозия в газовой среде при высоких температурах. Коррозионное разрушение поверхностного слоя металлов и сплавов при эксплуатации машин и оборудования при высоких температурах в газовых средах наносит большой ущерб. Потери металла неизбежны как при холодной пластической обработке, так и при термической обработке. Газовая коррозия поражаег не только поверхность металла, но может проникнуть и вглубь (например, обезуглероживание, сульфидная и водородная коррозия).  [c.82]


Смотреть страницы где упоминается термин Металлы и сплавы газовая : [c.208]    [c.145]    [c.28]    [c.86]    [c.152]   
Защита промышленных зданий и сооружений от коррозии в химических производствах (1969) -- [ c.140 , c.141 ]



ПОИСК



Металлы и сплавы Металлы

Сплавы металлов



© 2025 Mash-xxl.info Реклама на сайте