Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Окислы полупроводниковые

Таким образом, скорость окисления металла растет с увеличением п,ах. и (и, + Па), ДлЯ ПОЛуПрОВОДНИКОВЫХ ОКИСЛОВ [ е > (/1к + а)1 скорость окисления контролируется ионной проводимостью и ( + Па), а для ионных проводников [rtj < < + Па) 1 — электронной проводимостью КПе-После интегрирования уравнения (107) получаем  [c.62]

В полупроводниковых окислах с недостатком металла (например, в N10) один ион в узлах решетки окисла заменяется двумя ионами Ме (например, Li" ). Из двух ионов УИе только один может занять место иона Ме , а другой займет место, бывшее прежде вакантным (рис. 53)  [c.84]


Опытные данные о влиянии скорости движения газовой среды на скорость окисления металлов (рис. 38, 39 и 96), согласно которым уже при небольших скоростях газового потока достигаются предельные значения скорости окисления металлов при данной температуре, указывают на то, что окисление металлов, дающих при окислении полупроводниковые окислы /7-типа, контролируется не только диффузией реагентов через окалину, но и переносом окислителя к поверхности раздела окалина — газ, т. е. внешней массопередачей (см. с. 65). Таким образом, увеличение скорости движения газовой среды в какой-то степени эквивалентно повышению парциального давления окислителя.  [c.135]

Полупроводниковые терморезисторы имеют большой температурный коэффициент, достигающий значения — (0,02 ч- 0,06) и высокое начальное сопротивление — порядка 150 кОм. Для изготовления некоторых полупроводниковых терморезисторов используют спекаемые смеси окислов а) меди и марганца (серийно выпускаемые терморезисторы типа ММТ) б) кобальта и марганца (терморезисторы типа КМТ). Применяют и другие окислы, а также сульфиды, селениды, теллуриды и другие полупроводниковые материалы. Эти терморезисторы обладают более высокой чувствительностью и более низкой тепловой инерцией по сравнению с проволочными резисторами. Влияние удлинительных проводов в этом случае также не сказывается на результатах измерения. Однако свойства терморезисторов (воспроизводимость характеристик) в сильной степени зависит от технологии производства и наличия примесей.  [c.136]

Такая особенность приводит к исключительной чувствительности проводимости полупроводников к различным примесям, включая избыток или недостаток атомов одного из элементов, образующих полупроводниковые химические соединения кислорода в окислах, углерода в карбидах, серы в сульфидах и т. д.  [c.270]

Объяснения этого эффекта пока не дано, однако можно предположить, что быстрый переход от положительного изменения сопротивления к отрицательному связан с некоторыми р — и-полупроводниковыми свойствами, обнаруженными недавно в облученных окислах металлов. Известны случаи, когда в некоторых окислах металлов р-тина под действием излучения наблюдается переход в полупроводник и-типа, а в окислах га-типа под действием излучения свойства и-типа еще более закрепляются. Отсюда был сделан вывод, что термисторы, использовавшиеся в этом опыте, не годятся для работы в условиях облучения.  [c.361]

Полупроводниковые термометры сопротивления ПТС (термисторы или терморезисторы) изготавливают с чувствительными элементами из термически обработанных смесей окислов меди, марганца, магния, никеля, кобальта и других металлов, обладающих свойствами полупроводников. Чув-  [c.216]


Исследования коррозии проводятся представителями самого широкого круга ученых. Каждый исследователь должен понимать язык другого специалиста, если собирается всесторонне использовать результаты ранее выполненных исследований и сочетать их с собственными работами. Хотя полупроводниковые свойства окисло , электрохимическая кинетика и распределение поверхностных дислокаций обычно изучаются соответственно физиками, электрохимиками и металлургами, все эти проблемы играют важную роль при изучении процессов коррозии. Совершенно независимо от полученного образования кругозор специалиста по коррозии должен охватывать различные дисциплины, и именно это делает коррозию особенно интересным предметом.  [c.6]

Механизм проводимости закиси меди является результатом общего дефицита электронов, имеет полупроводниковую природу (электрическая проводимость возрастает с ростом температуры> и относится к р-типу, т. е. зависит от положительных Последние не следует смешивать с незанятыми катионными вакансиями, которые являются дырами в смысле вакансий в решетке, тогда как положительные дыры относятся к незаполненным зонам проводимости в самой наружной зоне Бриллюэна окисла. Схематическое расположение ионов в структуре закиси меди представлено на фиг. 9.  [c.31]

Отсутствие металлической проводимости и диэлектрические свойства галогенидов щелочных металлов и окислов щелочноземельных металлов указывают на переход одного (или двух) валентных электронов, вследствие чего зона проводимости металла оказывается пустой. Исследования нитридов переходных металлов III группы также указывают на полупроводниковый характер этих соединений [128]. Систематические исследования физических свойств карбидов титана, циркония и гафния показали [129, 130], что металлический характер проводимости в этих карбидах обусловлен исключительно вакансиями по углероду, создающими избыток атомов металла, которые вносят свои d- и s-электроны в зону проводимости. Концентрация электронов проводимости линейно уменьшается с понижением концентрации вакансий и при стехиометрическом составе достигает нуля (рис. 37).  [c.93]

Магнетит Fe304 также является окислом полупроводникового р-типа со значительно более низкой проводимостью, чем у вюстита. Он имеет структуру шпинели и иногда представляется как РеО-РегОз. В магнетите диффундируют как анионы, так и катионы.  [c.45]

Однако 3ta теория игнорирует возможность занятия ионами до-бавки катионных вакансий в полупроводниковых окислах с недостатком металла до тех пор, пока эти вакансии не будут замещены полностью это более вероятно, если радиус иона добавки /"i меньше радиуса иона основного металла Гг, например при введении магния (г,- = 0,78 А) в железо, окисляющееся до FeO (г,- = = 0,83 А). В подобных случаях возможно существенное уменьше-  [c.86]

В качестве краевых условий в моделях полупроводниковых приборов используют зависимости потенциалов на контактах от времеин, принимают значения концентраций носителей на границе между внешним выводом и полупроводником равными равновесным концентрациям Ра и Яо, для границ раздела полупроводника и окисла задаются скоростью поверхностной рекомбинации gs, что определяет величины нормальных к поверхности раздела составляющих плотностей тока Jp и Jn, и т. д.  [c.156]

Существует класс полупроводниковых приборов, выполненных на основе смешанных окислов переходных металлов, которые известны под общим названием термисторов. Термин термистор происходит от слов термочувствительный резистор . Толчком к разработке термисторов послужила необходимость компенсировать изменение параметров электронных схем под влиянием колебаний температуры. Первые термисторы изготавливались на основе двуокиси урана ПОг, но затем в начале 30-х годов стали использовать шпинель MgTiOз. Оказалось, что удельное сопротивление MgTiOз и его температурный коэффициент сопротивления (ТКС) легко варьируются путем контролируемого восстановления в водороде и путем изменений концентрации MgO по сравнению со стехиометрической. Использовалась также окись меди СиО. Современные термисторы [60, 61] почти всегда представляют собой нестехиометрические смеси окислов и изготавливаются путем спекания микронных частиц компонентов в контролируемой атмосфере. В зависимости от того, в какой атмосфере происходит спекание (окислительной или восстановительной), может получиться, например, полупроводник п-типа на поверхности зерна, переходящий в полупроводник р-типа в глубине зерна, со всеми вытекающими отсюда последствиями для процессов проводимости. Помимо характера проводимости в отдельном зерне, на проводимость материала оказывают существенное влияние также процессы на границах между спеченными зернами. Высокочастотная дисперсия у термисторов, например, возникает вследствие того, что они представляют собой сложную структуру, образованную зонами плохой проводимости на границах зерен и зонами относительно высокой проводимости внутри зерен.  [c.243]


Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции + + 2ё Ti составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует TiOj. Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Ti , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией.  [c.372]

Транзистор МДП — полевой транзистор с изолированным затвором, состоящий из трех слоев металлического (М), диалектричесКогО (Д) и полупроводникового (П) в качестве диэлектрика обычно используют пленку окисла кремния (МОП — транзистор) [9].  [c.158]

В авиационной технике полупроводниковые материалы используют в приборах для генерации и усиления электрических сигналов и выпрямления переменного тока (диоды) и в качестве фотосопротивления и фотодиодов. Термоэлектрические свойства полупроводников позволяют применять их в качестве термосопротивлений, термоэлементов, термостабилизаторов и при создании солнечных батарей. Магнитные свойства полупроводниковых материалов (окислы металлов переходных групп, соединения металлов с серой, теллуром и селеном) позволяют применять их при изготовлении малогабаритных антенн, транс-  [c.279]

Полупроводниковыми свойствами обладает ряд окислов, в частности, окислы переходных металлов. К полупроводникам относятся окислы меди, цинка, кадмия, титана, молибдена, вольфрама, ypajia, марганца, никеля и др. Среди оксидных полупроводников рассмотрим закись меди ujO и окись марганца МП3О4.  [c.187]

БЮг 1730 1250 Та, Мо, W А1 2 - 3 При нагреве электронной пушкой разложения не происходит. Та, Мо, W взаимодействуют с 510з с образованием летучих окислов. В полупроводниковой технике используется термическое осаждение из газовой фазы  [c.431]

Ферритами, или оксиферами (MeOFejOa, где Me — символ двухвалентного металла) называют металлокерамику из мелких порошков окислов железа (FejOa) и окисей двухвалентных металлов (МпО, MgO, ZnO, NiO и др.), спеченных в особых условиях. Они обладают высокими (устойчивыми) магнитными и электрическими (полупроводниковыми) свойствами и являются незаменимыми материалами для современных радиоэлектронных аппаратов (ферритовые матрицы, запоминающие устройства и другие элементы  [c.114]

Электропроводящее стекло (полупроводниковое) — стекло, обладающее свойствами полупроводников благодаря включению в состав элементов или окислов, придающих стеклу электропроводность. Различают халь-когенидные стекла, в состав которых входят в различных сочетаниях сплавы сульфидов, селенядов и теллуридов, а также мышьяка, висмута и других элементов и оксидные ванадиевые стекла на основе окислов ванадия и фосфора с добавками других окислов. Они находят широкое применение в качестве термисторов, светофильтров и фотосопротивлений.  [c.274]

Ферритами (оксиферами) называют металлокерамику из мелких порошков окислов железа (РегОз) и окисей двухвалентных металлов (МпО, MgO, ZnO, NiO и т. д.), спеченных в особых условиях с образованием соединений в виде МеОРеаОз, где Me — символ двухвалентного металла. Они обладают высокими (устойчивыми) магнитными и электрическими (полупроводниковыми) свойствами и являются незаменимыми материалами для современных радиоэлектронных аппаратов, так как дают возможность создавать ферритовые матрицы, запоминающие устройства и другие элементы электронно-вычислительных машин. Ферриты изготовляются в виде 1 отовых твердых хрупких изделий, допускающих обработку только шлифованием.  [c.209]

Отсутствие строгой стехиометричности окислов в кристаллическом состоянии приводит к появлению катионных или кислородных вакансий, и окисные пленки приобретают полупроводниковый характер. В таких поверхностных слоях процессы диффузии получают направленный, часто односторонний характер. Так, например, в окисных пленках на меди доминируют кислородные вакансии, и рост окисной пленки на меди происходит при диффузии атомов меди на ее поверхность. У цинка наблюдается обратное явление.  [c.22]

На установке, описанной в главе четвертой, проводились исследования термического сопротивления прослойки для специально приготовленных образцов. Процесс структурирования наполнителя в клеевых прослойках осуществлялся на специально изготовленной высоковольтной установке, схема которой изображена на рис. 5-13. В качестве полимерной основы изучалась эпоксидная композиция на основе ЭД-5 и ПЭПА. Наполнителями служили порошки меди и алюминия. Порошкообразная электролитическая медь с частицами сферической формы эквивалентного диаметра d = 7 мкм и алюминиевый порошок с диаметром частиц d = 8,2 мкм предварительно окислялись в среде воздуха. При этом медные частицы покрывались полупроводниковой пленкой U2O, способствующей образованию пространственной структуры в клеевой прослойке, а алюминиевые — диэлектрической окисной пленкой AI2O3, предрасполагающей к образованию мостиковой структуры в клеевой  [c.229]


Основным полупроводниковым материалом для изготовления Т. является кремний. Четырёхслойная -структура изготавливается, как правило, путём последовательных операций термодиффузии примесей р- и н-типа в пластину монокристаллич. кремния, причём для получения эмиттерного -слоя сложной геом. формы применяются маскированнс окислом и фотолитография.  [c.115]

ФЕРРИТЫ (лат. ferrum—железо)—общее название сложных окислов, содержащих железо и др. элементы. Большинство Ф, является ферримагнетиками (см. также Анти ферромагнетик. Слабый ферромагнетизм) и проявляет полупроводниковые или диэлектрич. свойства (см. Магнитные диэлектрики).  [c.292]

Ещё одна новая область Ф.—фотолитография, возникшая в связи с развитием микроэлектроники. Для защиты полупроводниковой базы от травления, напыления и иных видов формирования рисунков используют фоторезисты, чаще всего полимерные органические, но для получения на них защитного рисунка применяют AgHal-СЧС высокого разрешения. Замена AgHal-СЧС на несеребряные возможна и здесь и уже частично идёт предложены разл. СЧС на основе осаждённых или напылённых слоев металлов (напр., Pd) и их солей, физически проявляемых с отложением неблагородных металлов (Си, Ni) используются СЧС с галогенидами РЬ и Т1, окислами Мо и др.  [c.347]

Чувствительные элементы термометров сопротивления (рис. 4.13) представляют собой тонкую медную, никелевую или платиновую проволоку, навитую на каркас (терморезистор) (рис. 4.13, а), или полупроводниковый термисторный элемент (рис. 4.13, б) из смеси окислов никеля, марганца, кобальта, магния, ти-Рис. 4.13. Чувствительные элемен- ана, спрессованных и спеченных при высокой темпе-ты термометров сопротивления ратуре в виде стержней, шайб, дисков и бусинок. Электрические элементы сопротивления и термисторы предназначены для измерения температуры через сопротивление проволоки или полупроводника, изменяемое при нагреве. Чувствительность термисторов на порядок выше чувствительности проводниковых терморезисторов.  [c.101]

На наш взгляд, повышенная пассивируемость и высокие защит-ше свойства пассивных пленок обусловлены специфическими свойствами образующихся поверхностных слоев. Методом кулонсметрии показана корреляция пассивируемости МС различного состава и нержа-вещей стали со скоростью образования их окислов. Выявлена корреляция и между сигналом ФЭП и коррозионной стойкостью МС. Методом переменно-точной поляфизации показано различие в полупроводниковых свойствах окислов МС и кристаллических сплавов. Увеличение скорости образования и изменения свойств образующихся окислов у МС по сравнению с их 1фисталлическими.аналогами объясняется в рамках гипотезы изменения электронного строения металлов  [c.55]

В последнее время стало очевидным, что способность окисных фаз пассивировать металлы находится в прямой зависимости от полупроводниковых свойств окислов. Еще в наших ранних работах с Оше [19, с. 103], а также в работах Бялоб-жеского с сотр. [20] по изучению влияния облучения на сплавы было обращено внимание на то, что электрохимическое и коррозионное поведение металлов меняется в соответствии с тем, как меняются под влиянием излучения свойства окисных пленок, которые рассматривались как полупроводники. При этом исходили из того, что природа полупроводниковой пленки и отклонения от стехиометрии играют существенную роль в процессах переноса зарядов и вещества через эти пленки.  [c.20]

В связи с этим нами были предприняты попытки изыскать методы, которые позволили бы наблюдать за изменением полупроводниковых свойств окисных фаз, возникающих на поверхности металлов в процессе анодного окисления и пассивации. Весьма плодотворным в этом отношении оказался разработанный метод фотоэлектрической поляризации (ф. э. п.), который позволяет непрерывно, не вынимая электрод из электролита, наблюдать за поверхностной полупроводниковой фазой, изменением ее дефектной структуры и состава в процессе анодного окисления. Теория и сущность метода описаны в работах [21]. Из теории метода ф. э. п. следует, что характер и степень отклонения от стехиометрии окисла связаны со знакам и амплитудой фотоответа соотношением  [c.20]

СТЕКЛО ПОЛУПРОВОДНИКОВОЕ (электропроводящее) — неорга-нич. стекло, обладающее электрич. св-вами полупроводников. Увеличение электронной проводимости неорганич. стекол достигается существенным повышением их объемной или поверхностной электропроводности. Различают 2 вида С. п. 1) стекла, к-рые содержат элементы или окислы с ярко выраженными св-вами полупроводников и поэтому обладают повыш. объемной электропроводностью 2) стекла, имеющие поверхностные полупроводниковые покрытия и характеризующиеся высокой поверхностной электропроводностью. (См. Стекло с электропроводящей поверхностью). Известны две группы С. п. с повышенной объемной электропроводностью халько-генндные и оксидные.  [c.257]

ОСВ обычно окрашены в темио-коричне-вый или черный цвет, совершенно непрозрачны для видимой части спектра, способны пропускать инфракрасные лучи в области длин волн около 4 мк. Электрич. и полупроводниковые св-ва ОСВ приведены в табл. 4 Существенный недостаток ОСВ—очень низкая химйч. стойкость, которая повы-Птается при замене У.О. окислами P.O., ВаО, РЬО и др.  [c.258]

Оксидные катоды относятся к числу наиболее эффективных и экономичных. Высокая эффективность данных катодов достигается применением сложного покрытия из карбонатов бария, стронция и кальция, наносимого на металлический керн. После прокаливания в вакууме карбонаты разлагаются с образованием окислов. Окись углерода и углекислый газ, образующиеся при разложении, откачиваются. Последующая активировка катода приводит к образованию структуры, обладающей полупроводниковыми свойствами с малой работой выхода. Рабочая температура катода колеблется в пределах 900—1200 К. Эмиссионные характеристики оксидных катодов зависят от свойств материала керна, особенностей технологического режима изготовления, состояния поверхности электродов лампы и режимов эксплуатации. Поэтому при расчете катодов допустимые значения плотности тока подбираются в зависимости.от режима работы лампы.  [c.68]

Современный технический прогресс тесно связан с созданием и широким применением новых неорганических материалов со специфическими магнитными, электрическими и оптическими свойствами. Среди этих материалов видное место занимают ферриты — соединения окиси железа с окислами других металлов, обладающие цеииым сочетанием ферромагнитных, полупроводниковых и диэлектрических свойств. Это позволяет применить ферриты там, где использование обычных металлических ферромагнетиков практически невозможно. Речь идет прежде всего о технике высоких и сверхвысоких частот. С увеличением частоты электромагнитных колебаний значительно возрастают потери энергии из-за возникновения вихревых токов. Мощность этих потерь прямо пропорциональна квадрату частоты и размерам тела, но обратно пропорциональна удельному сопротивлению ферромагнетика. Очевидно, что в высокочастотных полях потери энергии могут быть снижены увеличением сопротивления, а оно у ферритов достигает величины порядка 10 —10 ом см.  [c.3]

Появление пленки и последующее торможение процесса анодного растворения молибдена в щелочных и кислых растворах связано с формированием, окислением и химическим растворением многослойной пленки, состоящей, по всей вероятности, из высших окислов молибдена -, - и а-фаз. При ф >> 0,8 в пленка утолщается, становится рыхлой, постепенно отслаивается от электрода и вновь образуется. По-видимому, под рыхлым слоем окислов существует плотная полупроводниковая пленка, которая препятствует выделению " H flopofla при высоких анодных потенциалах, что подтверждается ботами [14 и 15].  [c.17]


Смотреть страницы где упоминается термин Окислы полупроводниковые : [c.84]    [c.6]    [c.123]    [c.274]    [c.408]    [c.130]    [c.410]    [c.241]    [c.222]    [c.182]    [c.101]    [c.342]    [c.163]   
Электротехнические материалы Издание 5 (1969) -- [ c.364 , c.365 , c.366 ]



ПОИСК



Л полупроводниковый

Окислы



© 2025 Mash-xxl.info Реклама на сайте