Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плоские колебания механических систем

Стакан имеет шесть круглых отверстий для охлаждения неподвижной катушки 27 и два прямоугольных — для доступа к наконечнику при настройке регулятора. Корпус, стакан и плита скреплены между собой шпильками 2. Сердечник притянут к плите болтом 23. Корпус через изоляционную втулку крепится к основанию 5. Дополнительно магнитная система крепится к основанию через изоляционную колодку 28 с помощью угольников 29, жестко связанных с плитой. Подвижная катушка наматывается на латунный каркас, который крепится к шайбе 11. Катушка состоит из двух обмоток — напряжения 14 и токовой 15. Подвижная катушка подвешивается на четырех плоских пружинах и может перемещаться в зазоре между наконечником и корпусом. На подвижной контактной колодке 10 установлена алюминиевая планка, к которой прикреплены контактные пластинки. Концы контактной колодки связаны со шпильками цилиндрических пружин 17, вторые концы пружин прикреплены винтами к корпусу. С обеих сторон от контактной колодки расположены изоляционные колодки 7, на которых размещены контакты 9, соприкасающиеся с пластинками контактной колодки. Контактное нажатие пальцев обеспечивается пружинами 8. Контактные пальцы соединены проводами с секциями регулирующих резисторов 31. Для предотвращения воздействия резких толчков и тряски на контактную систему подвижная система снабжена противовесом, состоящим из груза 25, рамки 20 и пружины 22. При перемещении подвижной системы рамка, связанная со шпилькой передней цилиндрической системы, поворачивается вокруг оси 27. Груз, связанный с подвижной системой через пружину, может поворачиваться вокруг оси 24. Кроме указанного регулятор имеет резисторы обратной связи 1, предназначенные для гашения механических колебаний подвижной системы в переходных режимах, регулировочный реостат 30 с ползуном и конденсаторы для улучшения дугогашения.  [c.302]


Достоинством метода свободных затухающих колебаний является его простота и высокая разрешающая способность, что особенно важно при исследованиях в условиях, когда рассеяние энергии не велико. На рис. 72 показана схема установки для исследования рассеяния энергии в материалах при поперечных колебаниях 82]. Установка состоит из механической колебательной системы, включающей плоский образец 1 с грузами 2, присоединенными к утолщенным его концам, и подвешенной на двух длинных струнах 3 системы четырех электромагнитов предназначенных для возбуждения колебаний путем подачи на них мгновенного импульса тока системы регистрации колебаний, состоящей из зеркала 5, линзы 6, осветителя 7 и барабана 8 с фотобумагой, на которую записываются затухающие колебания с помощью отраженного от зеркала сфокусированного луча света.  [c.94]

Для оценки виброустойчивости станков используют экспериментальные и аналитические методы. Первые на стадии проектирования станков реализовать невозможно. Поэтому для расчета динамической системы аналитическим методом выбирают параметры из условия устойчивости систем на основе анализа дифференциальных уравнений движения. Для их составления создают расчетную схему. Последнюю представляют в виде механической модели, состоящей из отдельных сосредоточенных масс, соединенных упругими связями. При этом предполагают, что деформация станка происходит, главным образом, в его стыках и соединениях. Упругую систему рукавных станков для полирования и щлифования облицовочного камня с некоторыми допущениями можно принять плоской (рис. 1). Подобный подход обусловлен тем, что угловые колебания рукавов относительно оси у практически не влияют на качество обрабатываемой поверхности. Начало координат располагают в центрах тяжести каждой массы ( i и Сг). Обобщенными координатами будут относительные перемещения масс, отсчитываемые от начала координат, и углы поворота масс относительно центров тяжести. По данной колебательной модели составляют уравнения движения  [c.304]

Механический стержень, проходящий внутри керамических колец, соединяет основание излучателя (масса, присоединенная к преобразователю) с колеблющейся поверхностью и обеспечивает плотное сжатие элементов. Активная поверхность излучателя (передняя масса) представляет собой толстую металлическую пластину в виде круглого поршня с плоской поверхностью. Значение массы перед преобразователем должно определяться при расчете резонансной частоты колебаний системы с учетом эффективной массы пьезокерамических элементов и нагрузки окружающей жидкости.  [c.85]


Так как сила, действующая на приёмник давления (малый сравнительно с X), от частоты не зависит [рм. формулы (10.1)], то для обеспечения постоянства колебательной скорости (а, значит, и развиваемого лентой напряжения) подвижная система ленточного приёмника давления должна управляться активным механическим сопротивлением, не зависящим от частоты. Таким сопротивлением могло бы явиться сопротивление бесконечно длинной трубы, размеры сечения которой малы по сравнению с длиной волны. Колебания ленты на входе такой трубы возбуждали бы плоскую волну, причём труба нагружала бы ленту сопротивлением  [c.324]

До сих пор изменение масштаба предполагалось одинаковым во всех направлениях, но бывают случаи, не подходящие под эту рубрику, когда можно очень плодотворно применить принцип динамического подобия. Рассмотрим, например, колебания изгиба системы, состоящей из тонкой упругой полоски, плоской или изогнутой. На основании 214, 215 мы видим, что толщина полоски Ь и механические постоянные и р будут входить только в комбинациях и Ьр и, следовательно, можно делать сравнения, хотя изменения толщины находятся в ином отношении, чем изменения других размеров. Если при пренебрежении толщиной линейная размерность есть с, то при прочих равных условиях времена должны изменяться пропорционально р /а. Ь . Для данного вещества, данной толщины и формы времена поэтому пропорциональны квадратам линейной размерности. Не следует, однако, забывать, что подобные результаты, выражающие закон, только приближенно справедливый, находятся на ином уровне, нежети более непосредственные следствия принципа подобия.  [c.416]

Данная книга ставит своей задачей главным образом изучение устойчивости движения однородной вязкой жидкости по отношению к бесконечно малым возмуш,ениям, т. е. по отношению к естественным формам малых колебаний такой механической системы. Она не содержит, следовательно, многих других интересных проблем, таких, например, как устойчивость границы, разделяющей две различные жидкости. Даже в случае однородной вязкой жидкости не дало бы большой пользы только составление перечня всех изученных случаев. К счастью,.два различных прототипа неустойчивости представлены двумя, простейшими -типами течения, а именно течением Куэтта и плоским течением Пуазейля первое из них впервые успешно исследовал Дж. И. Тэйлор, а второе — В. Гейзенберг. С тех пор оба случая рассматривались рядом других авторов. Исследование этих двух случаев, подробное настолько, насколько это нужно, составляет поэтому центральную часть теоретического анализа, содержащегося в этой книге. При этом будет наглядно показано, что многие другие случаи схожи с двумя указанными. Случаю пограничного слоя также будет уделено много места вследствие замечательного успеха экспериментов Шубауэра и Скрэм-стеда и других недавних открытий, а также благодаря важности этого случая в приложениях к технике.  [c.5]

При проектировании ультразвуковых колебательных систем многофункциональных аппаратов необходимо обеспечить увеличе амплитуды колебаний рабочего инструмента не менее чем в 10 ра помощью концентратора и выполнить требования повьпнен компактности. В этом случае, как отмечалось ранее, использую колебательные системы с четвертьволновыми преобразователем концентратором [6, 12]. Недостатком таких систем является соедине преобразователя (пьезоэлектрического) с концентратором в плоско наибольших механических напряжений. Этот недостаток устраняете колебательной системе [19], вьшолненной в виде тела вращен образованного двумя металлическими накладками, межд которы вьппе узла смещения ультразвуковой волны расположе пьезоэлектрические элементы.  [c.34]

Устанопка 2 испытания на ударную усталость отличается тем, что она снабжена упругой подвеской, на которой установлен якорь электромагнита. Механические колебания системы якорь электромагнита—упругая подвеска передаются на боек через плоскую пружину, жестко связанную с якорем.  [c.261]

В качестве примера применения разработанного метода построения моделей механических систем рассмотрим одноступенчатую зубчатую передачу на упругих опорах (рис. 62). В этом случае при выбранной системе координат Oxyz для прямозубой цилиндрической передачи реакции связей зубчатых колес с корпусом передачи действуют в плоскости г/Oz. Движение упруго-опертого корпуса при колебаниях мояшо охарактеризовать тремя обобщенными координатами двумя смещениями s , его центра масс вдоль осей 0 / и Oz и малым поворотом корпуса относительно оси Ох. Предполагается, что начальное положение абсолютной системы координат Oxyz определяется положением центра масс корпуса передачи в состоянии статического равновесия. При рассматриваемой плоской схеме перемещений корпуса зубчатой передачи каждая упругая опора Kopnjxa в зависимости от конструктивного исполнения схематизируется в виде одного или двух одномерных независимых упругих элементов, расположенных вдоль главных направлений жесткости опор.  [c.175]


Вибрации осциллографируются с четырьмя различными коэффициентами увеличения порядка 500 200 80 и 30. Комплект приборов К001 предназначен для работы при температуре окружающего воздуха 10. .. 35 °С и относительной влажности воздуха до 80% при 30°С. Наводки от внешнего магнитного поля с частотой 50 Гц любого направления и напряженностью до 1000 А/м практически не влияют на работу датчиков. Чувствительность гальванометров к постоянному току не менее 8-10 мм/мА при индукции 0,4 Тл в зазоре магнитного блока светолучевого осциллографа. Для преобразования механических колебаний в электрические применены индукционные датчики (преобразователи) сейсмического типа. Для крепления преобразователя в основании имеются четыре стальные втулки с внутренней резьбой Мб. К боковым стойкам основания с помощью плоских пружин подвешен балансир. На свободном конце балансира укреплены две цилиндрические катушки. Каждая из них находится в своей магнитной системе, состоящей из магни-топровода и постоянного магнита с полюсным наконечником.  [c.128]

Наиболее существенные отличительные особенности рецензируемого пособия 1) полнее, чем в имеющейся учебной литературе, освещены мировоззренческие вопросы в теоретической механике 2) введен ряд новых разделов в соответствии с тенденциями развития научно-техни-ческого прогресса, например, однородные координаты, применяемые при описании роботов-манипуляторов. что потребовало существенно перестроить раздел кинематики твердого тела основные теоремы динамики изложены не только в неподвижных, но и в подвижных (неинерциальных) системах координат в разделе Синтез движения рассмотрены вопросы сложения не только скоростей, но и ускорений. При этом получен ряд новых результатов сравнение механических измерителей углов поворота и угловых скоростей твердых тел основы виброзащиты и виброизоляции, динамические поглотители колебаний основы теории нелинейных колебаний, включающей изложение основ методов фазовой плоскости, метода малого параметра, асимптотических методов, метода ускорения 3) в методических находках, позволивших углубить содержание курса и уменьшить его объем впервые обращено внимание на то, что условия динамической уравновешенности ротора и условия отсутствия динамических реакций в опорах твердого тела при ударе — это условия осуществления свободного плоского движения твердого тела полнее и глубже развиты аналогии между статикой, кинематикой и динамикой полнее изложены электромеханические аналогии и показана эффективность применения уравнений Лагранжа-Максвелла, для составления уравнений контурных токов сложных электрических цепей получение теоремы об изменении кинетической энергии для твердого тела из соотношения между основными динамическими величинами и многие другие.  [c.121]

Предварительные замечания. Мы опишем лекционные эксперименты, наглядно демонстрируюш,ие существование электромагнитных волн, свойства которых находятся в полном согласии с теми, которые выводятся математически из теории Максвелла (см. 3). Опыты, которые мы опишем, аналогичным по содержанию опытам Герца (см. 1), сыгравшим решающую роль для признания теории Максвелла. Основная идея их — показать, что такие волны возникают вокруг проводника, по которому течет быстропеременный электрический ток, подобно тому как около тела, совершающего механические колебания и находящегося в упругой среде, возникают акустические (упругие) волны. Подходящее приспособление (вогнутое зеркало) позволяет придать электромагнитным волнам, излучаемым проводником, вид плоских волн. Опыты, которые будут здесь описаны, в значительной степени аналогичны опытам Герца и по выполнению главное отличие в следующем Герц работал с искровыми контурами и пользовался возбуждаемыми в них затухающими электромагнитными колебаниями и не имел возможности усиливать колебания, возникавшие в приборе, воспринимающем электромагнитные волны в описываемых здесь опытах колебания генерируются ламповым генератором (автоколебательной системой) и являются незатухающими в приборе, воспринимающем электромагнитные волны, применяется условие, что позволяет получать даже при очень малой мощности источника эффекты, вполне заметные для очень большой аудитории.  [c.251]


Смотреть страницы где упоминается термин Плоские колебания механических систем : [c.115]    [c.120]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.227 , c.233 ]

Прочность Колебания Устойчивость Т.3 (1968) -- [ c.227 , c.233 ]



ПОИСК



Колебания механические

Колебания механической системы

Механические системы механических систем

Плоские колебания механических

Система механическая

Система сил, плоская



© 2025 Mash-xxl.info Реклама на сайте