Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение пластичного материала

При постоянных напряжениях прочность хрупкого матерна.-та детали определяется пределом прочности, т. е. о р д = а , а пластичного — пределом текучести так как при а, начинается разрушение пластичного материала.  [c.153]

Таким образом, значительная часть отступлений от сформулированного выше правила связана с тем, что в определенных условиях разрушение пластичного материала происходит без заметных пластических деформаций.  [c.71]


Пластичностью называют способность материала деформироваться в широких пределах без разрушений. Пластичность материала характеризуется относительным удлинением б — отношением остаточного удлинения образца при разрыве к первоначальной его длине 1  [c.92]

Пластичность— это способность материала получать остаточное изменение формы и размера без разрушения. Пластичность характеризуется относительным удлинением б при разрыве, %  [c.9]

Накопленный опыт эксплуатации конструкций различного назначения показывает, что, как правило, их преждевременные повреждения, связанные с запуском тех или иных механизмов разрушения материала, происходят при совокупном действии нескольких конструктивных, технологических и(или) эксплуатационных факторов. Каждый фактор в отдельности в большинстве случаев может не приводить к провоцированию какого-либо механизма разрушения. Например, мы можем защитить конструкцию в отдельности от усталостного разрушения, учитывая факторы, провоцирующие этот механизм, и обеспечить ее длительную прочность, используя пластичный материал с большим сопротивлением ползучести, но в то же время нет гарантии, что рассматриваемая конструкция не разрушится по механизму, именуемому в литературе взаимодействием ползучести и усталости .  [c.4]

Заметные остаточные деформации появляются в пластичных материалах, когда напряжения достигают предела текучести. Разрушение наступает, когда напряжения достигают величины временного сопротивления при этом деформации хрупкого материала могут быть незначительными. Итак, для деталей, изготовленных из пластичного материала, опасным напряжением можно считать предел текучести, а для деталей из хрупкого материала — временное сопротивление.  [c.118]

Типичная диаграмма сжатия пластичного материала (малоуглеродистая сталь) показана на рис. 11.18, а. Вначале диаграмма имеет вид, аналогичный диаграмме растяжения. Дальше кривая идет круто вверх из-за увеличения площади сечения образца и упрочнения материала. Разрушения при этом не получается. Образец просто сплющивается (рис. 11.18, б), и опыт приходится прекращать. В результате испытания определяют предел текучести при сжатии. Для пластичных материалов пределы текучести при растяжении и сжатии практически одинаковы, но площадка текучести при сжатии выявлена значительно меньше, чем при растяжении.  [c.42]


Однако опыты показывают, что при действии статической нагрузки заклепки разрушаются одновременно. Это объясняется тем, что к моменту разрушения происходит выравнивание усилий в заклепках вследствие пластичности материала и за счет зазоров между заклепками и листами.  [c.88]

Как известно (см. 2.10), предельным напряжением для пластичного материала является предел текучести о,,,, а для хрупкого -предел прочности Ор. Поэтому предельное напряженное состояние у пластичных материалов наступает при возникновении остаточных деформаций, а у хрупких — при начале разрушения.  [c.238]

В общем случае поглощенная энергия W, необходимая для разрушения единицы объема, состоит из трех частей энергии упругой деформации (W ), энергии пластической деформации (W ) и энергии, необходимой для движения трещины (Wf). В случае одноосного растяжения гладкого образца из пластичного материала составляющие W , и Wf пренебрежимо малы по сравнению с W , поэтому можно принять W S W и выразить W в виде  [c.276]

Диаграмма растяжения хрупкого материала (рис. 224) значительно отличается от диаграммы для пластичного материала. Площадка текучести отсутствует разрушение образца происходит при весьма малых остаточных деформациях, без образования шейки. Основной механической характеристикой является предел прочности.  [c.220]

Увеличение сопротивления деформированию отражается на характере диаграммы — направление выпуклости кривой изменяется (ср. рис. 222 и 225). Образец из пластичного материала при сжатии не может быть доведен до разрушения, следовательно, для этих материалов предела прочности при сжатии не существует.  [c.221]

Однако, надо отметить, что деление материалов на хрупкие и пластичные носит условный характер, так как при некоторых условиях хрупкие материалы разрушаются как пластичные, т. е. с большими остаточными деформациями и, наоборот, пластичные — как хрупкие. Например, хрупкий в обычных условиях материал — стекло, при большом всестороннем сжатии приобретает свойства пластичного материала и разрушается как пластичный. Пластичные стали приобретают хрупкие свойства при низкой температуре. В силу этого точнее было бы говорить о пластичном или хрупком разрушении.  [c.279]

Полученное выражение (3.4) позволяет связать критическое раскрытие плоскостного дефекта с ресурсом пластичности материала в зоне предразрушения Лр. Это возможно благодаря тому, что оба критерия 5(,и Лр определяют один и тот же момент разрушения (так как момент достижения критического разрыхления материала при пластической деформации соответствует моменту страгивания трещины). Используя связь между максимальной деформацией ei ,ax и ресурсом пластичности в виде /28/  [c.83]

Чем больше 5 и Ч, тем пластичнее материал. Материалы, обладающие очень малой пластичностью, называют хрупкими. Диаграмма растяжения хрупких материалов не имеет площадки текучести, у них при разрушении не образуется шейка.  [c.195]

При разрыве образцов из пластичного материала на образце образуется шейка и поверхность разрушения как бы разделяется на две зоны центральную, в которой поверхность перпендикулярна направлению растягиваюш его напряжения, и коническую поверхность, наклоненную к оси образца под углом примерно 45°. Этот тип разрушения называется разрушением путем сдвига или разрушением срезом.  [c.64]

Экспериментальные исследования показывают, что хрупкие материалы разрушаются при незначительных пластических деформациях. Если же материал обладает пластичностью, то разрушению предшествуют значительные пластические деформации и оно сопровождается более сложными явлениями, чем при разрушении хрупкого материала, т. е. поведение материала под нагрузкой зависит от его свойств и вида напряженного состояния.  [c.93]

При растяжении пластичного материала за опасное состояние могут быть приняты начало текучести, начало образования шейки и разрушение материала. Опасными напряжениями соответственно могут быть предел текучести, предел прочности и истинное напряжение в момент разрушения (см. 6.2). Появление линий сдвигов при возникновении остаточных деформаций и разрушение образцов по поверхностям, наклоненным к направлению растягивающей силы под углом 45° ( 6.2), дают основание считать, что как образование и развитие пластических деформаций, так и разрушение происходит за счет скольжения и сдвигов под действием наибольших касательных напряжений. Такой вид разрушения называется разрушением путем среза.  [c.94]


Стержни, работающие на кручение, обычно называют валами. Рассматривая кручение вала (например, по схеме, приведенной на рис. 206), легко установить, что под действием скручивающего момента, приложенного к свободному концу, любое сечение на расстоянии X от заделки поворачивается относительно закрепленного сечения на некоторый угол ф — угол закручивания. При этом чем больше скручивающий момент Мк, тем больше и угол закручивания. Зависимости ф = /Шк), называемые диаграммами кручения, можно получить экспериментально на соответствующих испытательных машинах с помощью специального записывающего устройства. Примерный вид такой диаграммы (полученной при постепенном увеличении нагрузки вплоть до разрушения) для вала длиной I, изготовленного из пластичного материала, показан на рис. 207.  [c.227]

По-разному ведут себя пластичные и хрупкие материалы и при испытании на сжатие. Как уже упоминалось, для испытания на сжатие используют короткие цилиндрические образцы, располагаемые между параллельными плитами. Для малоуглеродистой стали диаграмма сжатия образца имеет вид кривой, показанной на рис. 1.43. Здесь, как и у диаграммы растяжения, обнаруживается площадка текучести с последующим переходом к зоне упрочнения. В дальнейшем, однако, нагрузка не падает, как при растяжении, а резко возрастает. Происходит это в результате того, что площадь поперечного сечения сжатого образца увеличивается сам образец вследствие трения на торцах принимает бочкообразную форму (рис. 1.44). Довести образец пластичного материала до разрушения практически не удается. Испытуемый цилиндр сжимается в тонкий диск (см. рис. 1.44), и дальнейшее испытание ограничивается возможностями машины. Поэтому предел прочности при сжатии для такого рода материалов найден быть не может (см. табл. 1.1).  [c.87]

Значение коэффициента запаса зависит и от свойств материала. В случае пластичного материала запас по пределу текучести может быть меньшим, чем в случае расчета детали из хрупкого материала. Это достаточно очевидно, поскольку хрупкий материал более чувствителен к различным случайным повреждениям и неожиданным дефектам производства. Кроме того, случайное повышение напряжений в пластичном материале может вызвать только небольшие остаточные деформации, в хрупком же материале последует прямое разрушение.  [c.102]

Все признаки хрупкого разрушения можно получить и у пластичного материала, если его испытывать в условиях наложенного всестороннего растяжения.  [c.359]

При испытании материалов статической нагрузкой на центральное растяжение и сжатие устанавливается так называемое опасное (или предельное) состояние. Оно характеризуется наступлением текучести, сопровождаемой значительными остаточными деформациями или появлением трещин, свидетельствующих о начале разрушения. Нормальные напряжения в поперечных сечениях стержней в момент наступления опасного состояния при образце из пластичного материала равны пределу текучести От, а при образце из хрупкого материала равны пределу прочности Ов (при растяжении Овр и при сжатии СТас).  [c.340]

Для обоснованного выбора модели проведем анализ процесса деформирования материала в плоских волнах нагрузки, заканчивающегося откольиым разрушением. Материал в плоскости откола подвергается сжатию в прямой волне нагрузки до максимального давления (область / на рис. 122, а), после чего разгружается до максимальной величины растягивающих напряжений в результате взаимодействия волн разгрузки 5+ и S . Принимаем, что разрушение пластичного материала является результатом накопления повреждений в процессе пластического деформирования под действием теизора-девиатора напряжений с наложением шарового тензора растягивающих напряжений и последующего развития и слияния микротрещин в поврежденном материале.  [c.243]

Под механическими свойствами понимают характеристики, определяющие поведение металла (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обычно относят сопротивление металла (сплава) деформации (прочность) и соиротивление разрушению (пластичность, вязкость, а также сиособность металла не разрушаться при наличии треш,ин).  [c.60]

По-нному ведет себя материал в условиях сжатия. После периода уизругих деформаций он непрерывно упрочняется, как вследствие наклепа, так и вследствие увеличения поперечных размеров образца (бочкообразное расплющивание). Пластичный материал ни при каких условиях пе удается довести до разрушения.  [c.127]

Разрушение при действии переменных напряжений ст на участке АВ имеет статический характер, т.е. такой же, как и при однократном разрушении с образованием шейки и исчерпанием всей пластичности материала (для г ладких образцов участок АВ простирается до 10 - Ю циклов, а остро надрезанных - до 10 - Ю циклов). На участке ВС характер разрушения меняется с увеличением числа цр клов и понижением амплитудного напряжения Аа, макропластиче-ская деформация постепенно уменьшается и исчезает, а разрушение становится типично усталостным, т.е. происходящим в результате образования и распространения усталостной трещины. От приложения переменных напряжений в металле постепенно накапливаются повреждения, перехо-  [c.386]

Образец из пластичного материала вначале приобретает бонкообразиую форму, затем сплющивается в лепешку. Разрушения не наблюдается.  [c.43]

Все материалы можно разделить на две категории пластичные и хрупкие. Их принципиальное отличие заключается в том, что пластичные материалы перед разруигением имеют значительные остаточные деформации, а хрупкие — разрушаются при ничтожно малых деформациях. Отсюда следует, что если деталь выполнена из пластичного материала, то остаточные деформации, являющиеся наравне с признаками разрушения, критерием непрочности детали, должны возникнуть значительно раньше, т. е. при меньших напряжениях, чем признаки непосредственного разрушения, так как предел текучести материала будь то условный или физический, всегда меньше предела прочности. Таким образом, для пластичных материалов предельным напряжением будет предел текучести.  [c.283]


Для решения данного вопроса на стадии конструктивно-технологического проектирования соединений оболочковых конструкций наиболее удобным является airopfmi оценки запаса пластичности материала, базирующийся на критерии В.Л. Колмогорова /128/. Согласно данному ПОДХОДУ, условие деформируемости металла без разрушения за период  [c.192]

Теперь представим себе, что мы ведем испытание не при одноосном, а при трехосном напряженном состоянии. Примем для простоты, что насбычное растяжение у нас накладывается равномерное всестороннее растяжение, либо всестороннее сжатие, т. е. наложена шаровая составляющая тензора. Тогда для пластичного материала картина будет выглядеть следующим образом. При наложении всестороннего растяжения круг Мора (рис. 57, а), не меняя своего диаметра, сместится вправо и при дополнительном увеличении напряжения а он сначала коснется предельной кривой разрушения. Это означает, что произойдет хрупкий разрыв. Пластичный материал проявляет свойство хрупкости.  [c.90]

Предельные напряжения, при дсстижении которых появляются пластические деформации (если материал пластичный) или признаки хрупкого разрушения (если материал хрупкий). Эти напряжения определяются при механических испытаниях материалов и зависят от его свойств и вида деформации (растяжение, сжатие и т.д.).  [c.9]

Опыт инженерного использования критериев (6.22) и (6.26) указывает, что в материале принципиально заложена возможность разрушения как отрывом, так и срезом. Все зависит от вида напряженного состояния и от соотношения между константами Ст( .р и 2Тррез. Например, стержневой образец из мрамора разрушается при растяжении без остаточных деформаций, поверхность излома ориентировагса перпендикулярно оси образца, что характерно для разрушения отрывом. Однако такой же образец при растяжении в условиях значительного бокового давления об наруживает существенную остаточную деформацию (до 20%) и разрушается срезом. Стержневые образцы из пластичного материала с относительно глубокой кольцевой выточкой разрушаются без существенных остаточных деформаций, хотя при отсутствии указанного надреза разрушению предшествуют большие остаточные деформации с образованием шейки. Причина охрупчивания образца состоит в том, что у дна выточки имеет место трехосное растяжение, при котором материал предрасположен к разрушению отрывом. Подобный эффект вызывает даже шейка, сформировавшаяся при растяжении стержневого образца. При этом первоначальная трещина возникает в окрестности точки, лежащей на продольной оси образца в плоскости поперечного сечения наименьшей площади (см. точку О на рис. 6.4). Трещина имеет дискообразную форму, а с ростом нагрузки ее фронт распространяется в радиальном направ-  [c.142]

В восемнадцати предшествующих главах были изложены различные разделы механики деформируемого твердого тела, при этом практическая направленность каждого из них не очень акцентировалась. Но основная область приложения механики твердого тела — это оценка прочности реальных элементов конструкций в реальных условиях эксплуатации. С этой точки зре-нпя различные главы приближают нас к решению этого основного вопроса в разной степени. Классическая линейная теория упругости формулирует свою задачу следуюш им образом дано пекоторое тело, на это тело действуют заданные нагрузки, точки границы тела претерпевают заданные перемещения. Требуется определить поле вектора перемещений и тензора напряжений во всех точках тела. После того как эта задача решена, возникает естественный и основной вопрос — что это, хорошо или плохо Разрушится сооружение или не разрушится Теория упругости сама по себе ответа на этот вопрос не дает. Правда, зная величину напряжений, мы можем потребовать, чтобы в каждой точке тела выполнялось условие прочности, т. е. некоторая функция от компонент о.-,- не превосходила допускаемого значения. В частности, можно потребовать, чтобы нигде не достигалось условие пластичности, более того, чтобы по отношению к этому локальному условию сохранялся некоторый запас прочности, понятие о котором было сообщено в гл. 2 и 3. Мы знаем, что для пластичных материалов выполнение условия пластичности в одной точке еще не означает потери несущей способности, что было детально разъяснено на простом примере в 3.5. Поэтому расчет по допустимым напряжениям для пластичного материала безусловно гарантирует прочность изделия. Для хрупких материалов условие локального разрушения отлично от условия наступления текучести и локальное разрушение может послужить началом разрушения тела в целом. Поэтому расчет по допускаемым напряжениям для хрупких материалов более оправдан. Аналогичная ситуация возникает при переменных нагрузках и при действии высоких температур. В этих условиях даже пластические материалы разрушаются без заметной пластической деформации и микротрещина, возникшая в точке, где 42  [c.651]

Г. В. Ужиком и другими исследователями экеперимен-тально установлено, что зависимость между предельными амплитудами симметричных циклов нормальных и касательных напряжений в напряженном состоянии (рис. XI.18, б) (зависимость tRa = Ra Ra)) при ИХ синфазном изменении можно считать эллиптической. На основании этого утверждения и результатов опытов Л. И. Савельева, условие усталостного разрушения в опасной точке детали из пластичного материала запишется в виде  [c.347]


Смотреть страницы где упоминается термин Разрушение пластичного материала : [c.56]    [c.268]    [c.106]    [c.209]    [c.288]    [c.151]    [c.11]    [c.179]    [c.71]    [c.42]    [c.348]   
Сопротивление материалов Издание 13 (1962) -- [ c.57 ]



ПОИСК



Диаграмма растяжения образца пластичного материала. Механические характеристики пластичности и кратковременной прочности Разрушение

Материал пластичный

Несущая способность деталей из материалов, мало пластичных и склонных к хрупкому разрушению

Несущая способность деталей из материалов, мало пластичных и склонных к хрупкому разрушению нагрузок

Пластичность разрушения

Пластичные материалы — Сопротивление усталостному разрушению

Разрушение материалы

Характер разрушения при сжатии пластичных и хрупких материалов. Диаграмма сжатия



© 2025 Mash-xxl.info Реклама на сайте