Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Излучение теплоты

Как изменится отход ударной волны от обтекаемой поверхности сферы, если учесть излучение теплоты газом, находящимся между скачком и поверхностью тела в окрестности точки полного торможения  [c.477]

Отсюда выражение для определения количества передаваемой излучением теплоты в плоскопараллельной экранированной системе  [c.322]

В отличие от теплопроводности и конвекции лучистый теплообмен всегда сопровождается переходом энергии из одной формы в другую. При излучении теплота тела превращается в энергию электромагнитных колебаний, которая распространяется в окружающем пространстве со скоростью света. При поглощении энергия электромагнитных колебаний частично или полностью вновь трансформируется в теплоту.  [c.3]


При панельно-лучистом отоплении обогрев помещений осуществляется за счет излучения теплоты поверхностями гладких греющих панелей в полу, потолке и стенах. 25—281  [c.385]

При расчете котла, например при расчете теплообмена между продуктами сгорания и поверхностями нагрева, используются данные о парциальном давлении трехатомных газов, обладающих способностью излучения теплоты. Парциальные давления диоксида углерода и сернистого газа,  [c.29]

При сжигании топлива с повышенной влажностью в топочном пространстве могут быть установлены отражательные своды 4, которые уменьшают излучение теплоты от горящего слоя и тем самым улучшаю г подсушку каждой новой порции топлива, обеспечивая его более быстрое возгорание. Дымовые газы из тонки подходят к гюверхности нагрева котла 5.  [c.16]

Электротермическая запись основана на тепловом действии электрического тока. Для записи используют специальную бумагу, состоящую из трех слоев верхний слой содержит сернокислый цинк, средний — выполнен из черной бумаги, а нижний — металлический (алюминий). Металлическая игла или петля из вольфрамовой проволоки диаметром 0,3 мм перемещается по бумаге. При пропускании электрического тока между проволокой и металлическим слоем происходит излучение теплоты, частицы верхнего слоя взрываются и сгорают. Обнаженный второй слой обеспечивает хорошо видимую черную линию.  [c.261]

Большое значение имеет скорость нагрева. При увеличении скорости нагрева сокращается длительность термической обработки, увеличивается пропускная способность оборудования, уменьшается угар металла и т. д. Но при быстром нагреве в деталях возникают большие внутренние напряжения. Нагрев деталей происходит в результате омывания их горячими газами в печи или излучения теплоты от стенок муфеля либо нагревательных элементов печей сопротивления, а также за счет теплопередачи от жидкого расплава.  [c.135]

Описанный эффект можно использовать для радиационного охлаждения здания. Для этого крыша дома должна быть изготовлена из металлического листа с передвижными теплоизоляционными щитами (рис. 43, я). В ночное время щиты снимают с металлической крыши и происходит излучение теплоты в окружающее пространство. Охлаждение помещений осуществляется в ре-  [c.89]

ПОТЕРИ НА ИЗЛУЧЕНИЕ - теплота, отдаваемая источником сварочного нагрева в окружающую среду посредством излучения и не воспринимаемая свариваемым изделием или присадочным металлом.  [c.113]

При теплообмене излучением теплота переносится между удаленными друг от друга нагреваемой деталью и окружающими предметами посредством электромагнитного излучения в соответствии с законом Стефана-Больцмана, т. е. тепловой поток пропорционален разности четвертых степеней абсолютных температур поверхностей, участвующих в теплообмене. При конвективном теплообмене теплота с поверхности изделия уносится жидкостью или газом, движение которых создается принудительно, а при естественной конвекции это движение обусловлено различием в плотности нагретых и ненагретых объемов.  [c.60]


На рис. 19 показана электрическая печь с карборундовыми нагревателями. Печь состоит из металлического каркаса 8, рабочей камеры 10, выложенной огнеупорным шамотным кирпичом. Для уменьшения тепловых потерь в окружающую среду между наружными стенками и каркасом засыпают теплоизоляционный огнеупорный материал 9. Под печи выкладывают из прочных карборундовых плит 2. Силитовые стержни 3, служащие нагревательными элементами, установлены горизонтально в своде и лод подом печи. Такое расположение стержней обеспечивает свободное излучение теплоты в рабочую камеру, ускоряет нагрев заготовок и создает более равномерный нагрев. заготовок в рабочем пространстве печи.  [c.46]

Степень нагрева тела зависит еще от его формы. Количество полученной им теплоты пропорционально площади проекции А а на плоскость, перпендикулярную направлению лучей, в то время как количество излученной теплоты пропорционально полной его поверхности 8е- Так как последнее количество возрастает пропорционально четвертой степени абсолютной температуры тела, то, считая температуру тела однородной благодаря теплопроводности, найдем, что температура достигнет равновесного значения, когда будет иметь место условие  [c.101]

Наружное радиационное охлаждение. Осуществляется излучением теплоты стенкой в пространство. Причем, тепловое излучение стенки будет тем интенсивнее, чем выше ее допускаемая температура. На рис. 12.11 приведена примерная зависимость излучаемого стенкой теплового потока в пространство от ее температуры. Как видно из рисунка, при температуре стенки 1500—2000 К тепловой поток, сбрасываемый в пространство, лежит в пределах (0,2—0,6) Ю Вт/м .  [c.65]

Излучение свойственно всем телам, т. е, наряду с прямым потоком лучистой энергии от более нагретых тел к менее нагретым всегда имеется обратный поток энергии от менее нагретых тел к более нагретым. Конечный результат такого обмена,и представляет собой количество переданной путем излучения теплоты. При этом известные из  [c.262]

Теплота в ванне расходуется на теплоотвод в металл изделия, в водоохлаждаемые башмаки, на плавление и перегрев основного и электродного металлов, на излучение с поверхности шлаковой ванны и т, ц  [c.154]

Теплота может передаваться либо при непосредственном контакте между телами (теплопроводностью, конвекцией), либо на расстоянии (излучением), причем во всех случаях этот процесс возможен только при наличии разности температур между телами.  [c.14]

В соответствии с формулой (11.16) полный поток теплоты, передаваемый излучением от горячего тела более холодному, пропорционален поверхности тела, приведенной степени черноты и разности четвертых степеней абсолютных температур тел.  [c.93]

Рассмотрим систему тел, аналогичную изображенной на рис. 11.2. Установим между ними экран (рис. 11.4). Лучшую защиту второго тела от излучения первого обеспечит, естественно, абсолютно белый экран, полностью отражающий все падающие на него излучения. Реально можно сделать экран из полированных металлических пластин со степенью черноты еэ = 0,05-н0,15. В этом случае часть энергии, испускаемой первым телом, будет поглощаться экраном, а остальная — отражаться. В стационарном режиме вся поглощенная экраном энергия будет излучаться им на второе тело, в результате чего будет осуществляться передача теплоты излучением от первого тела через экран на второе. Оценим роль экрана, исключив из рассмотрения конвекцию и теплопроводность. Примем, что ei = = е2 = 8э = е и Т[>Т2- Термическое сопротивление теплопроводности тонкостенного экрана практически равно нулю, так что обе его поверхности имеют одинаковые температуры Т,.  [c.94]

Разделение теплопереноса на теплопроводность, конвекцию и излучение удобно для изучения этих процессов. В действительности очень часто встречается сложный теплообмен, при котором теплота передается двумя или даже всеми тремя способами одновременно.  [c.97]

Часто приходится рассчитывать стационарный процесс переноса теплоты от одного теплоносителя к другому через разделяющую их стенку (рис. 12.1). Такой процесс называется теплопередачей. Он объединяет все рассмотренные нами ранее элементарные процессы. Вначале теплота передается от горячего теплоносителя к одной из поверхностей стенки путем конвективного теплообмена, который, как это показано в 12.1, может сопровождаться излучением. Интенсивность процесса теплоотдачи характеризуется коэффициентом теплоотдачи а.  [c.97]


Пароперегреватели. Пароперегреватель предназначен для повышения температуры пара, поступающего из испарительной системы котла. Его трубы (диаметром 22—54 мм) могут располагаться на стенах или потолке топки и воспринимать теплоту излучением — радиационный пароперегреватель либо в основном конвекцией — конвективный пароперегреватель. В этом случае трубы пароперегревателя располагаются в горизонтальном газоходе или в начале конвективной шахты.  [c.150]

Согласно закону Вина ( 11.2) максимум излучения высокотемпературной (Тта 5800 К) поверхности Солнца приходится на Х с = 2,898/Г = 2,898/5800 = 0,0005 м = = 0,5 мкм, т. е. на видимую часть спектра. В этой области спектра (табл. 11.1) углекислый газ атмосферы не поглощает лучистую теплоту, т. е. пропускает ее к поверхности Земли.  [c.212]

Устройства, в которых нагревают металл перед обработкой давлением, можно подразделить на нагревательные печи и электронагревательные устройства. В печах теплота к заготовке передается главным образом конвекцией и излучением из окружающего пространства нагревательной камеры, выложенной огнеупорным материалом. Теплоту получают в основном сжиганием газообразного, реже жидкого, топлива (мазута).  [c.61]

Под воздействием лазерного излучения за короткий промежуток времени (10" —10" с) поверхность детали из стали или чугуна нагревается до очень высоких температур Распространение теплоты в глубь металла осуществляется путем теплопроводности. После прекращения действия лазерного излучения происходит закалка нагретых участков, благодаря интенсивному отводу тепла в глубь металла (самозакалка).  [c.225]

Перенос теплоты может осуществляться тремя способами теплопроводностью, конвекцией и излучением, или радиацией, Эги формы теплообмена глубоко различны по своей природе и характеризуются различными законами.  [c.345]

Третий вид теплообмена называют излучением, или радиацией. Процесс передачи теплоты излучением между двумя телами, разделенными полностью или частично пропускающей излучение средой, происходит в три стадии превращение части внутренней энергии одного из тел в энергию электромагнитных волн, распространение электромагнитных волн в пространстве, поглощение энергии излучения другим телом. При сравнительно невысоких температурах перенос энергии осуществляется в основном инфракрасными лучами.  [c.346]

Третьим способом переноса теплоты является излучение. За счет излучения теплота передается во всех лучепрозрачных средах, я том числе и в вакууме. Носителями энерии при теплообмене излучением являются фотоны, излучаемые и поглощаемые телами, участвующими в теплообмене.  [c.5]

Третьим способом переноса теплоты является излучение. За счет излучения теплота передается во всех лучепрозрачных средах, в том числе и в вакууме, например в космосе, где это единственно возможный способ передачи теплоты между телами. Носителями энергии при теплообмене излучением являются фотоны, излучаемые и поглощаемые телами, участвующими в теплообмене.  [c.72]

Аккумулирование тепловой энергии может осуществляться в одном баке, разделенном пергородкой на две секции верхнюю — для горячей и нижнюю — для холодной воды. С помощью теплового насоса теплота из нижней секции бака, где расположен испаритель, передается в верхнюю, в которой установлен конденсатор. В режиме отопления горячая вода из верхней части бака направляется в систему панельно-лучистого отопления. При работе системы в режиме охлаждения вода в верхней секции бака охлаждается в процессе ночного излучения теплоты коллектором, а для охлаждения помещения используется более холодная вода из нижней секции бака, причем необходимую разность температур обеспечивает тепловой насос. Обычные кондиционеры воздуха можно рекомендовать лишь для районов с сухим жарким климатом. Во влажном климате необ.ходимо примен.чть специальную установку для осушения воздуха. Использование теплового насоса наиболее целесообразно в таких климатических зонах, где отсутствуют большие колебания летних и зимних температур воздуха и тепловые нагрузки систем отопления и охлаждения приблизительно одинаковы. В этих условиях тепловой насос используется круглогодично с полной загрузкой.  [c.92]

В сварочной ванне расплавленные основной и, если используют, доно,л нительиый металлы переменгиваются. По мере перемещения источника теплоты вслед за ним перемещается и сварочная ванна. В результате потерь теплоты на излучение, теплоотвод в изделие, а при электрошлаковой сварке — ив формирующие ползуны в хвостовой части ванны происходит понижение температуры расплавленного металла, который, затвердевая, образует сварной шов. Форма и o6iieM сварочной ванны зависят от способа сварки и основных параметров режима. Ее объем может составлять от миллиметров до сотен кубических сантиметров.  [c.208]

Излучение чистых газов (Н2О, СО2 и др.) находится в инфракрасной части спектра. Имеющиеся в продуктах iopa-ния раскаленные твердые частицы (зола и т. п.) придают пламени видимую окраску, и его степень черноты мо.жет быть большой, достигая значений 0,6—0,7. Поэтому при факельном сжигании твердых топлив, а при выделении сажи (при сжигании с недостатком воздуха) — и жидких, и газообразных основное ко личество теплоты в топках передается излучением пламени. Излучение 1оря1де-го пламени (факела) при теплообмене в топках рассчитывается по специальным формулам [15].  [c.96]

Большинство теплоизоляторов состоит из волокнистой, порошковой или пористой основы, заполненной воздухом. Термическое сопротивление теплоизоля-тора создает воздух, а основа лишь препятствует возникновению естественной конвекции воздуха и переносу теплоты излучением. Сама основа в плотном состоянии обычно обладает достаточно высокой теплопроводностью [>. 1Вт/(м-К)1, поэтому с увеличением плотности набивки минеральной ваты, асбеста или другого теплоизолятора их теплопроводность возрастает. С увеличением температуры коэффициент теплопроводности теплоизоляции также растет из-за увеличения теплопроводности воздуха и усиления теплопереноса излучением.  [c.101]


Еще лучшими свойствами обладают вакуумно-многослойные и вакуумно-по-рошковые теплоизоляционные материалы. Перенос теплоты теплопроводностью через поры в таких теплоизоляторах уменьшается путем создания глубокого вакуума, а для уменьшения переноса теплоты излучением служит либо порошок, либо ряд слоев фольги с малой степенью черноты, выполняющих роль экранов. Вакуумно-многослойная теплоизоляция сосудов для хранения сжиженных газов имеет эффективный коэффициент теплопроводности Хэф  [c.102]

В процессе сгорания топлива в топочной камере теплота может передаваться конвекцией и излучением нагреваемому материалу в печах или охлаждающим поверхностям в котлах. В результате газы охлаждаются, их энтальпия снижается. Этот процесс на рис. 16.1 изображается линией ав = = onst. Например, при охлаждении в топке продуктов сгорания до 1100 С и неизменном коэффициенте избытка воздуха ав=1,25 (линия АВ) их энтальпия снижается до 22,5МДж/м. В соответствии с уравнением (5.5) теплота, отдаваемая продуктами сгорания в процессе их охлаждения (в расчете на единицу количества сгоревшего топлива), равна уменьшению их энтальпии, т. е.  [c.129]

Испарительные поверхности. Парогенерирующие (испарительные) поверхности нагрева отличаются друг от друга в котлах различных систем, но, как правило, располагаются в основном в топочной камере и воспринимают теплоту излучения. Это — экранные трубы, а также устанавливаемый на выходе из топки небольших котлов конвективный пучок труб (см. рис. 18.1).  [c.149]

Дуговая плавильная электропечь (рис. 2.5) питается трехфазным переменным током и имеет три цилиндрических электрода 9 из графитизироваиной массы. Электрический ток от трансформатора кабелями 7 подводится к электрододержателям S, а через них — к электродам 9 и ванне металла. Между электродами и металлической шихтой 3 возникает электрическая дуга, электроэнергия превращается в теплоту, которая передается металлу и шлаку излучением. Рабочее напряжение 160—600 В, сила тока 1—10 кА. Во время работы иечи длина дуги регулируется автоматически путем перемещения электродов. Стальной кожух 4 печи футерован огнеупорным кирпичом 7, основным (магнезитовый, магнезитохромитовый) или  [c.37]

Обработка материалов лазерным луч м. Направим на поверхность какого-то материала, например металла, луч мощного лазера. Вообразим, что интенсивность излучения постепенно растет (за счет увеличения мощности лазера или за счет фокусирования излучения). Когда интенсивность излучения достигнет необходимого значения, начнется плавление металла. Вблизи гюверхности, непосредственно под световым пятном, возникает область жидкого (расплавленного) металла. Поверхность, отграничивающая эту область от твердого металла (ее называют поверхностью расплава), постепенно перемещается в глубь материала по мере гюглощення им световой энергии. При этом площадь поверхности расплава увеличивается и, следовательно, теплота начинает более интенсивно проникать в глубь материала за счет теплопроводности. В результате устанавливается поверхность расплава (рис. 18.3, а).  [c.295]

Принять, что внутри спутника источники теплоты отсутствуют, а температура поверхности всюду одинакова. Отраженное от Земли солнечное излучение и собстнеинпе нзлучснне Земли не учитывать.  [c.189]

Соетапим уравнение теплового баланса длп королька термопары. Термопара отдает теплоту за счет излучения  [c.200]


Смотреть страницы где упоминается термин Излучение теплоты : [c.70]    [c.57]    [c.24]    [c.148]    [c.255]    [c.68]    [c.153]    [c.157]    [c.197]    [c.148]   
Котельные установки (1977) -- [ c.75 ]

Котельные установки (1977) -- [ c.75 ]



ПОИСК



Влияние излучения на перенос теплоты в жидкостях

Коэффициент передачи теплоты излучением

Основные принципы описания процесса переноса теплоты излучения



© 2025 Mash-xxl.info Реклама на сайте