Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепло обратимое

Холодильной машиной называется устройство, действующее циклично и передающее тепло от среды менее нагретой к среде более нагретой. Любой обратимый двигатель, получающий тепло обратимо при одной температуре и отдающий тепло обратимо при другой, более низкой температуре, будучи обращенным, становится холодильной машиной. Так, например, машина Карно рассматривалась выше как двигатель и как холодильная машина то же относится к идеальному регенеративному двигателю ( 12-7).  [c.129]


Обращенный регенеративный цикл показан а рис. 15-1 фигурой a ad b a. Так как оба рассматриваемых цикла полностью обратимы и оба получают и отдают тепло обратимо и изотермически, то согласно второму закону они имеют одинаковое отношение полученного тепла к отданному теплу  [c.130]

Для машины Карно или любой другой обратимой машины, получающей тепло обратимо при более низкой температуре Т2 и отдающей тепло обратимо при более высокой температуре Г], холодильный коэффициент может быть найден на основании второго закона термодинамики. Так, например, если q — тепло, полученное при температуре Г), а <72 — тепло, отданное при температуре Гг, то  [c.131]

В обратимом цикле тепло обратимо передано от горячего источника к холодному. Таким образом, обратимый цикл можно рассматривать как способ осуществления обратимого переноса тепла от более нагретого тела (горячий источник тепла) к менее нагретому (холодный источник) и наоборот. Если же цикл необратим, той передача от горячего к холодному источнику осуществляется необратимо. Степень необратимости перехода тепла от горячего к холодному источнику тем больше, чем больше разности температур горячего источника и рабочего тела и рабочего тела и холодного источника. Очевидно, что наибольшая степень необратимости соответствует переходу тепла от горячего к холодному источнику без совершения работы. Рассмотрим в этой связи термический к. п. д. цикла Карно. В соответствии с определением, приведенным ранее, термический к. п. д. любого цикла определяется соотношением  [c.57]

С точки зрения количества источников тепла обратимый цикл Карно по сравнению с любым другим обратимым циклом построен наиболее экономно — для его осуществления необходимо всего лишь два источника тепла, поскольку подвод тепла к рабочему телу от горячего источника и отдача тепла от рабочего тела к холодному источнику осуществляются по изотермам.  [c.61]

Если при постоянных температурах источников тепла единственным обратимым циклом является цикл Карно, то при переменных температурах источников тепла обратимым циклом будет такой, у которого при теплообмене с источниками тепла температура рабочего тела точно повторяет изменение температур этих источников, отклоняясь от них на бесконечно малую разность.  [c.30]


Как уже говорилось в 4, уравнение импульсов (5.17), преобразованное к виду р—рг - — tn iv—Dj), определяет в плоскости и, р прямые, проходящие через начальную точку Vi,pi (точка Она рис. 1.5.7) с отрицательным угловым коэффициентом—т (т-прямые, или прямые Рэлея— Михельсона Михельсон ) впервые использовал их при изучении течений с теплоподводом). Состояниям газа в любом сечении трубы при подводе к нему тепла должны соответствовать точки одной т-прямой независимо от того, подводится ли тепло обратимо или его подвод сопровождают необратимые процессы.  [c.104]

Подинтегральное выражение представляет собой энтропию. Следовательно, энтропию можно определить, как приведенное тепло обратимого процесса.  [c.72]

Это означает, что изменение энтальпии складывается из двух составляющих — работы и тепла. При обратимом процессе работа достигает максимальной величины. При необратимом протекании работа частично или полностью, в зависимости от степени необратимости, превращается в тепло. Обратимая работа поэтому называется также максимальной работой. Мы будем использовать первое обозначение.  [c.308]

Однако прежде чем перейти к этому, нужно сделать на основании цикла Карно еще один вывод, который ведет к определению другой очень важной физической величины в термодинамике, тесно связанной с температурой,— энтропии системы. Если рассмотреть обратимый цикл Карно для случая, когда две адиабаты цикла очень близки друг к другу, то количества тепла становятся бесконечно малыми и вместо (1.3) можно записать  [c.18]

При осуществлении обратимого произвольного цикла необходимо в каждой точке процесса отводить или подводить теплоту при бесконечно малой разности температуры между рабочим телом и источником теплоты, так как иначе при конечной разности температур процесс передачи теплоты будет необратим. Для того чтобы выполнить это условие, нужно иметь бесконечно большое количество тепло-отдатчиков и теплоприемников. При этом температура двух соседних источников теплоты должна отличаться на бесконечно малую величину. Количество источников теплоты может быть уменьшено, если на отдельных участках цикла теплота будет отводиться и подводиться при неизменной температуре, т. е. в изотермических процессах.  [c.111]

При обратимости процесса на такую же величину должна уменьшиться энтропия среды. Это значит, что среда отдаст элементу тепло  [c.117]

Энтропия гелия II определяется статистическим распределением элементарных возбуждений. Поэтому при всяком движении жидкости, при котором газ квантов возбуждения остается неподвижным, не возникает никакого макроскопического переноса энтропии. Это и значит, что сверхтекучее движение не сопровождается переносом энтропии, или, другими словами, не переносит тепла. Отсюда в свою очередь следует, что течение гелия II, при котором имеет место лишь сверхтекучее движение, является термодинамически обратимым.  [c.708]

Бесконечно малое изменение di внутренней энергии равно разности полученного данной единицей объема тела количества тепла и произведенной силами внутренних напряжений работы dR. Количество тепла равно при обратимом процессе TdS, где Т — температура. Таким образом, Т dS—dR взяв dR ИЗ (3,1), получим  [c.20]

Термодинамика систем с отрицательными температурами изложена в гл. 7. Из этой главы можно заключить, что все вышеприведенные утверждения о системах с отрицательными температурами ошибочны. Спиновые состояния с отрицательными температурами — это равновесные состояния, и поэтому к ним применимо термодинамическое понятие температуры. Состояния эти являются устойчивыми, но в отличие от обычных систем их устойчивость характеризуется не минимумом внутренней энергии и энергии Гиббса, а максимумом этих функций (см. 34). Что касается того, что системы с отрицательной температурой остынут при контакте с телами, имеюш ими положительную температуру, то тело с /=10 С тоже остынет при контакте с термостатом, имеющим температуру / = 5° С, однако это не означает, что первоначальное состояние тела было неравновесным и неустойчивым. Теплый воздух в закрытой комнате зимой тоже остынет через характерное время теплопередачи через стены, хотя состояние воздуха все время равновесно и устойчиво. Состояния с отрицательной температурой нельзя представлять себе как состояния водного раствора соли в стакане в первые секунды после его переворачивания вверх дном, когда плотность раствора вверху больше, чем внизу, и система имеет избыток механической энергии, переходящей со временем в энергию теплового движения. При отрицательной температуре (см. 33) в системе могут быть проведены различные обратимые процессы, чего принципиально нельзя было бы сделать при неравновесном состоянии системы.  [c.174]


Процесс изменения состояния находящегося в окружающей среде тела может быть как обратимым, так и необратимым. В течение этого процесса тело будет обмениваться теплом с окружающей средой и, кроме того, совершать полезную работу над внешним объектом работы (который предполагается теплоизолированным как от рассматриваемого тела, так и от окружающей среды). Так как температура окружающей среды неизменна, то теплота Q, полученная телом от окружающей среды, равняется —T AS, где as = S2 — Si есть изменение энтропии окружающей среды в результате процесса /—2.  [c.81]

Проделав необходимые элементарные вычисления, которые мы здесь не приводим, получим следующий результат. Работа будет состоять из двух частей, первая часть — периодическая функция от t, т. е. полностью обратимая работа упругих тел. Но вторая часть оказывается пропорциональной времени t, следовательно, это та часть работы, которая рассеивается необратимым образом, превращаясь в тепло. Величина необратимой работы в единицу времени называется мощностью диссипации Z) выделяя из интеграла работы множитель при t, получим  [c.596]

При перекачивании перегретых паров трубопроводы самым тщательным образом изолируют, и их тепловые потери незначительны, но все же характер изменения состояния перегретого пара в результате устранения теплообмена между потоком и наружной средой уже не является изотермическим. Не будет он и строго адиабатическим— даже в хорошо изолированной трубе условия будут отличаться от условий при обратимом адиабатическом изменении объема, так как турбулентность, возникающая при движении, переходит частично в тепло, которое изменяет уравнение энергии (энергия, переходящая в потери, возвращается в виде механической энергии). Таким образом, с одной стороны, температура пара имеет тенденцию к снижению по длине трубопровода в результате расширения пара, с другой стороны, — к возрастанию вследствие поступления тепла от потерь напора. В результате режим движения находится между изотермическим и адиабатическим. Поскольку температура пара меняется по длине паропровода, меняются также динамическая вязкость р, число Рейнольдса и в общем случае коэффициент гидравлического трения X. Однако вследствие значительных скоростей движения пара в паропроводах (десятки метров в 1 с) сопротивление относится чаще всего к квадратичной области, где X от Не не зависит.  [c.295]

Описанный колебательный процесс течения массы жидкости, возникающий при гидравлическом ударе, возможен только при отсутствии вязкости. В действительности любая жидкость обладает вязкостью, поэтому процессы торможения массы жидкости за счет накопления энергии упругого сжатия и восстановления кинетической энергии массы жидкости за счет работы внутренних сил, не являются обратимыми. Например, при торможении потока в течение времени 4 жидкость продолжает двигаться со скоростью VQ относительно стенок трубы, следовательно, неизбежны гидравлические потери и превращение части кинетической энергии потока в тепло. В процессе торможения не вся кинетическая энергия перейдет в запас энергии упругого сжатия, часть ее за счет работы вязких сил превратится в тепло.  [c.367]

Воспользовавшись формулой (14-42), нетрудно найти значение эффективного к. п. д. ядерной энергетической установки. Эффективный к. п. д. t теплосиловой части установки представляет собой отношение произведенной полезной внешней работы L к количеству тепла Q, выделившегося в реакторе. Согласно уравнениям (14-41) и (14-42) значение достигаемое при оптимальной температуре рабочего тела (в предположении, что все процессы термодинамического цикла, за исключением процесса подвода тепла, обратимы), т. е. термический к. п. д. термодинамического цикла при 7 подв = 7 , равно  [c.467]

Таким образом, по сравнению с прямым преобразо-вание.м электроэнергии в тепло обратимый тепловой насос приводил бы к семикратной экономии энергии.  [c.178]

Вернемся к системе, изображенной на фиг. 1. Если проволока, соединяющая куски металла, очень тонка, то теплопередача будет медленной и градиент температуры в каждом куске будет равен нулю. В этом случае мы можем сказать, что куски металла получают и отдают тепло обратимо. В процессе передачи количества тепла энтропия более горячего куска уменьшается на величину — QITи а энтропия более холодного — возрастает на величину < / 2. Так как каждый элемент соединительной проволоки отдает столько же тепла, сколько получает, изменение энтропии всей системы AS при переходе количества тепла Q может быть представлено в виде  [c.12]

Определение температуры как физической величины, являющейся одной из фундаментальных в термодинамике, непосредственно связано с упомянутыми выше основными законами термодинамики. Обычно, исходя из первого закона тер-]лодинамики и используя формулировку Кельвина для второго закона, доказывают, что для обратимой тепловой машины, работающей по циклу Карно между температурами 01 и 02, отношение количества тепла Оь поглощенного при более высокой температуре 0ь к количеству тепла Оъ отданного при более низкой температуре 02, просто пропорционально отношению двух одинаковых функций от каждой из этих двух температур  [c.17]

Эти соотношения позволяют найти величину всех трех термоэлектрических эффектов, если известен хотя бы один и если 5 или р, известны в небольшом интервале температур вблизи Т. Применяемые на практике методы определения 5, р и П изложены в работах Бернара [3] и Блатта [12]. При выводе приведенных выше соотношений Томсон полагал, что такие обратимые процессы, как эффекты Пельтье и Томсона, можно рассматривать вне зависимости от происходящих одновременно необратимых явлений теплопроводности и выделения джоулева тепла. Наличие необратимых процессов делает сомнительным применение второго начала термодинамики в обратимой форме, однако Томсон получил правильный результат. Общая теория, рассматривавшая одновременно обратимые и необратимые процессы, была развита в 1931 г. Онсагером [47, 48]. Ее основы изложены Бернаром [3].  [c.271]


Покажем, что любой произвольный обратимый цикл, осуш,е-ствленный при наличии дзух источников тепла постоянной температуры, будет по эффективности равнозначен обратимому циклу Карно.  [c.121]

Располагаемая работа при течении газа может быть получена за счет внешнего тепла и уменьиления энтальпии газа. Это уравнение справедливо как для обратимых, так и для необратимых процессов течения газа с трением.  [c.201]

Сначала рабочее тело адиабатически сжимается до тех пор, пока его температура не станет равна температуре нагревателя Т (линия /2). После этого оно приводится в тепловой контакт с нагревателем и, изотермически расширяясь, обратимо отбирает от него тепло АН (линия 2У). На рис.5.9б это тепло равно площади фигуры Sg235.  [c.113]

О Это утверждение можно аргументировать и не входя в детали преобразования внутренней энергии в работу. Почему при Ш = АО неравновесная система нагреватель+холодильннк не может произвести работу Потому что ее внутренняя энергия в процессе установления равновесия остается неизменной все тепло от нагревателя переходит к холодильнику. Ясно поэтому, что работа будет тем больше, чем меньше будет энергия системы тело+среда в конце процесса установления за счет этого уменьшения энергии и совершается работа. Но конечное состояние этой теплоизолированной системы является равновесным и характеризуется определенным значением объема. Поэтому ее анергия будет тем меньше, чем меньше будет ее энтропия в силу определения (4.1) и ввиду положительности температуры производная (ди/дS)v > о, и это означает, что при неизменном объеме энергия растет с увеличением энтропии и уменьшается при ее уменьшении. Но энтропия теплоизолированной системы не может убывать. В лучШем случае, при обратимости процесса, она будет оставаться неизменной. Это и есть условие получения максимальной работы при этом конечная энергия системы будет минимально возможной.  [c.113]

При изучении движения в упругих телах мы до сих пор считали, что процесс деформирования происходит обратимым образом. В действительности процесс термодинамически обратим, только если он происходит с бесконечно малой скоростью, так что в каждый данный момент в теле успевает установиться состояние термодинамического равновесия. Реальное движение происходит, однако, с конечной скоростью, тело не находится в каждый данный момент в равновесии, и поэтому в нем происходят процессы, съремящиеся привести его в равновесное состояние. Наличие этих процессов и приводит к необратимости движения, проявляющейся, в частности, в диссипации механической энергии, переходящей в конце концов в тепло ).  [c.177]

К. п. д. и действительные циклы работы. Обозначим 4epe3j()j количество тепла, отводимого от среды с низкой температурой Tj, а через 2 — количество тепла, отдаваемого при высокой температуре Т . Согласно первому и второму законам термодинамики, самой эффективной холодильной машиной будет машина, работающая по обратимому циклу Карно. Для такой машины  [c.24]

В цикле рассмотренной выше идеализированной компрессионно холоди.чь-ной машины влажного сжатия дросселирование, иоказанное линией de на фиг. 18, является необратимым процессом и должно, следовательно, уменьшить холодильный коэффициент такого цикла по сравнению с холодильным коэффициентом обратимого цикла, работающего в том же интервале температур. В цикле холодильной машины тепло поглош,аемое в испарителе при постоянной температуре равно  [c.25]

Обычно расшпрепие хладоагента производится з вентиле или в каком-либо другом дросселирующем устройстве. Поэтому внешняя работа ие производится, п тепло Q2, поглощенное единицей массы хладоагента при его прохождении через холодную зону машины, эквивалептно уменьшению удельной энтальпии, происходящему при прохождении хладоагента по теплой зоне. Однако только в обратимом цикле прирост энтропии в холодной зоне равен уменьшению энтропии в теплой зоне. Характерной для холодной зоны величиной является эффективность т,, которая может быть определена как отношение этих количеств  [c.126]

Для охлаждения потока сжатого гелия лучше использовать холодны поток расширенного в детандере газа, чем испаряющуюся жидкость. Так как. передача тепла происходит в противоточном тенлообменпике и уменьшеггае энтропии охлаждаемого гелия почти равно увеличению энтропии холодного газа, то в этом случае процесс значительно ближе к обратимому, чем в случае испарения жидкого хладоагента.  [c.130]

Общпе сведения о термометрии. Фундаментальное определение температуры предложено Кельвином уже больше ста лет тому назад [37, 38]. В его основу может быть положен обратимый цикл Карно. Предполоя 1м, что количество тепла, изотермически пoглoи aeмoгo при более высокой температуре (7 ), равно а количество тепла, изотер-  [c.438]

Теплоперенос. Капица [42] впервые измернл количество тепла, которое необходимо сообщить единичной массе сверхтекучей компоненты, чтобы перевести ее в обычную жидкость. Он обнаружил, что Qt TS, причем энтропия S получается путем интегрирования данных по теплоемкости. Для своих измереиий Чандрасекар и Мендельсон [86] использовали прибор, показанный на фиг. 93. Обратимость здесь была обеспечена тем, что связь между двумя объемами гелия осуществлялась топкой гелиевой пленкой. В их работе, как и во всех подобных измерениях, определялись количество тепла, которое сообщается адиабатически изолированному сосуду, и масса гелия, перетекающая в этот сосуд. Эти эксперименты привели к значениям Д6 , которые согласуются с калориметрическими измерениями Херкуса и Уилкса [79] лучше, чем с измерениями Крамерса, Васшера п Гортера [52]. Поскольку результаты первых двух авторов оказались ошибочно завышенными, возникает вопрос, не следует ли при таких измерениях с пленкой рассматривать некоторый дополнительный член, учитывающий энергию, которую нужно сообщить пленке, чтобы превратить ее в макроскопический объем лшдкости.  [c.825]

При увеличении ширины канала, но которому происходит перенос тепла, торможение вытекающей из сосуда нормальной компоненты, обусловленное стенками, уменьшается и основной величиной, определяющей теплопроводность, становится диссипация, вызываемая взаимным трением обеих комионент. Формула Г. Лондона для термомеханического эффекта основана на допущении полной обратимости, и поэтому появление трения должно уменьшить разность давлений, соответствующую данной разности температур АГ в этой формуле. Если взаимное трение иронорциональпо третьей степени относительной скорости, то уравнение (32.7) принимает вид  [c.844]

В тепловых двигателях теплота, отдаваемая более нагретыми телами, превращается в работу не полностью некоторая доля этой теплоты передается рабочим телом менее нагретым телам. Переход теплоты от более нагретых тел к менее нагретым в результате действия теплового двигателя и обусловленные этим переходом изменения состояния участвующих в процессе тел по сравнению с начальным и представляют собой те компенсационные эффекты, которыми согласно второму началу термодинамики обязательно сопровождается любой как обратимый, так и необратимый круговые процессы превращения теплоты в работу. Этот относящийся к круговым процессам результат выражают еще следующим образом превращение теплоты в работу всегда сопровождается компенсирующим переходом некоторого количества теплоты от более нагретого к менее нагретому телу. Подчеркнем, что сказанное относится к круговым процессам среди незамкнутых процессов с одним источником теплоты могут быть такие, в которых сообщенная телу теплота превращается в работу полностью. oшлe [ я в связи с этим на следующее высказывание Зоммерфельда .. . Планк приводит сам собой напрашивающийся пример полного превращения тепла в работу, а именно изотермическое расширение идеального газа с подведением тепла от источника с высокой температурой при полном использовании давления газа для совершения работы. В этом процессе энергия не будет обесцениваться , а наоборот, будет становиться ценнее (тепло полностью превращается в работу) .  [c.47]


В распространяющейся звуковой волне процессы сжатия и расширения происходят настолько быстро, что теплообмен между той частью тела, через которую проходит звуковая волна, и другими его частями практически не успевает произойти, п поэтому изменение состояния тела при прохождении через него звуковой нолны осуществляется без подвода или отвода тепла, т. е. адиабатически. Так как вследствие малости изменений состояния действие внутреннего трения также оказывас. тся исчезающе малым, то звуковые колебания можно рассматривать как обратимый адиабатический или изоэнтропический процесс независимо от того, как меняется состояние всего тела в целом.  [c.77]


Смотреть страницы где упоминается термин Тепло обратимое : [c.199]    [c.256]    [c.9]    [c.34]    [c.50]    [c.131]    [c.421]    [c.694]    [c.70]    [c.190]    [c.238]    [c.55]   
Механика сплошной среды Часть2 Общие законы кинематики и динамики (2002) -- [ c.271 ]



ПОИСК



Двигатель тепловой обратимый циклический

Методы экспериментального исследования обратимых тепловых эффектов, сопутствующих намагничению ферромагнетиков

ОБЩИЙ ТЕРМОДИНАМИЧЕСКИЙ МЕТОД АНАЛИЗА ЦИКЛОВ ТЕПЛОВЫХ ДВИГАТЕЛЕЙ 9- 1. Обратимые циклы

Обратимая ЦТЭУ, обменивающаяся теплом с двумя тепловыми резервуарами

Обратимость

Общее выражение для термического КПД обратимых тепловых двигателей и прямых преобразователей энергии

РАБОЧИЕ ЦИКЛЫ ТЕПЛОВЫХ ДВИГАТЕЛЕЙ Глава девятая Термодинамический метод анализа циклов тепловых двигателей 9- 1. Обратимые циклы



© 2025 Mash-xxl.info Реклама на сайте