Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кручение при пластической деформации

КРУЧЕНИЕ ПРИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ 403  [c.403]

Кручение при пластической деформации.  [c.403]

КРУЧЕНИЕ ПРИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ <05  [c.405]

Книга соответствует традиционной программе машиностроительных вузов. Излагаются следующие разделы курса сопротивления материалов растяжение, кручение, изгиб, статически неопределимые системы, теория напряженного состояния, теория прочности, толстостенные трубы и тонкостенные оболочки, прочность при переменных напряжениях., расчеты при пластических деформациях, устойчивость и методы испытаний. Даются элементарные сведения пв композиционным материалам.  [c.32]


Изложены основные разделы курса сопротивления материалов растяжение, кручение, изгиб, статически неопределимые системы, теория напряженного состояния, теория прочности, толстостенные трубы, пластины и оболочки, прочность при переменных напряжениях, расчеты при пластических деформациях, устойчивость и методы испытаний. Для лучшего усвоения теоретического материала даны примеры с решениями. По сравнению с предыдущими изданиями опущены параграфы и главы, не получившие широкого практического применения, внесены дополнения и уточнения с учетом современных тенденций развития механики и прочности конструкций.  [c.4]

Расчет наибольшего истинного удлинения из условного сдвига см. [9], [40]. Расчет напряжений по замеренным пластическим деформациям производится иа основании диаграммы деформация -напряжение из опытов на кручение (при плоской деформации для металлов, подчиняющихся закону обобщенной кривой течения). При определении концентрации напряжений в материалах, не подчиняющихся закону обобщенной кривой, снимается диаграмма деформация—напряжение на плоском образце, имеющем бли )-кое к рассматриваемому деформированное состояние.  [c.518]

Рис. 10.4. Плоскости максимальных сдвигов при пластической деформация а — растяжение 6 — сжатие в — кручение Рис. 10.4. Плоскости <a href="/info/46581">максимальных сдвигов</a> при <a href="/info/1487">пластической деформация</a> а — растяжение 6 — сжатие в — кручение
Истинный предел прочности при кручении — наибольшее истинное касательное напряжение при разрушении образца, вычисленное с -четом перераспределения напряжений при пластической деформации Тк МПа (кгс/мм"")  [c.49]

Рис, 14.4. Плоскости максимальных сдвигов при пластической деформации а — растяжение б — сжатие в — кручение  [c.202]

Чем больше карательные напряжения, тем сильнее последействие. Так, при изгибе последействие значительно меньше, чем при кручении, а при всестороннем сжатии при отсутствии касательных напряжений последействия совсем не наблюдается. Как и вообще при пластической деформации, закон наложения при сложных напряженных состояниях при последействии не соблюдается .  [c.318]


Истинный предел прочности при кручении — наибольшее касательное напряжение, вычисленное по формуле Людвика - Кармана для кручения с пластической деформацией и отвечающее наибольшему скручивающему моменту, предшествовавшему разрушению образца где — диаметр образца — наибольший крутящий момент, предшествующий разрушению у — удельный угол закручивания в радианах на с М 1 мм — определяется графически, по кривои, построенной в координатах М — В  [c.491]

Истинным пределом прочности при кручении т называется наибольшее касательное напряжение, вычисленное по формуле для кручения с пластической деформацией и отвечающее наибольшему скручивающему моменту, предшествовавшему разрушению образца,  [c.30]

Рнс. 4. Плоскости максимальных сдвигов при пластической деформации а — при растяжении б — при сжатии в — при кручении  [c.15]

Преимущественная диффузия по поверхности или границам зерен и блоков мозаики объясняется тем, что там степень нарушения кристаллического строения и дефекты структуры (наличие искажений, вакансий, дислокаций, напряжений, трещин) выражены особенно сильно. Скорость диффузии по границам зерен зависит от угла разориентировки зерен относительно направления диффузионного потока. С точки зрения диффузионной сварки особый интерес представляет возможность ускорения диффузии в результате создания неравновесных дефектов при пластической деформации. В процессе пластической деформации создается избыточная концентрация вакансий, обусловливающая ускорение диффузии. При деформации кручением образцов из серебра обнаружено увеличение скорости диффузии не менее чем в 100 раз. Это увеличение было пропорционально скорости деформирования, т. е. мгновенной концентрации вакансий. Избыточные концентрации вакансий можно, как известно, создать также быстрым охлаждением (закалкой) или облучением частицами с большой энергией.  [c.19]

Между тем при неравномерном распределении напряжений (например, при изгибе, кручении) в статически неопределимых конструкциях, изготовленных из пластичных материалов, появление местных напряжений, равных пределу текучести, в большинстве случаев не является опасным для всей конструкции. Практика показывает, что при появлении местных пластических деформаций конструкция еще может удовлетворять предъявляемым к ней требованиям  [c.487]

Указанная схематизация достаточно точна для материалов типа алюминия и вполне допустима для материалов, имеющих диаграммы с ограниченной длиной площадки текучести (рис. 485). Это вытекает из следующих соображений. При наличии такой площадки текучести, как, например, у мягких углеродистых сталей, величина относительного удлинения в начале упрочнения в несколько раз превышает величину относительного удлинения в начале появления пластической деформации. Поэтому даже при неравномерном начальном распределении напряжений (изгиб, кручение, наличие концентраторов), но дальнейшем последовательном распространении пластической зоны с выравниванием напряжений, предела текучести они достигнут одновременно по всему сечению раньше, чем начнется упрочнение материала в точках с наибольшей пластической деформацией. Таким образом, предельное состояние, определяемое значительной пластической деформацией, наступит до начала упрочнения материала и предельная нагрузка может быть вычислена по пределу текучести.  [c.489]

Кручение бруса круглого поперечного сечения при наличии пластических деформаций  [c.370]

Пример 12.11. При решении задачи об упруго-пластическом кручении бруса с круглым поперечным сечением мы столкнулись с необходимостью иметь диаграмму сдвига материала в области пластических деформаций. Эху  [c.382]

При работе сварных соединений на сдвиг и кручение в отличие от растяжения (сжатия) и изгиба пластические деформации в МЯГКИХ прослойках не сдерживаются более прочными частями металла. Поэтому эффект контактного упрочнения в данных соединениях не проявляется. На сдвиг  [c.27]


Между тем при неравномерном распределении напряжений (например, при изгибе, кручении) в статически неопределимых конструкциях, изготовленных из пластичных материалов, появление местных напряжений, равных пределу текучести, в большинстве случаев не является опасным для всей конструкции. Практика показывает, что при появлении местных пластических деформаций конструкция еще может удовлетворять предъявляемым к ней требованиям и для перехода ее в предельное состояние требуется дальнейшее возрастание нагрузки. Таким образом, в действительности конструкция обладает запасом прочности, большим, чем при расчете по допускаемым напряжениям.  [c.546]

Для пластической деформации скольжением и двойникованием общим являются их дислокационный механизм и однородность деформации. Геометрия и дислокационная модель скольжения объясняют поворот осей кристалла в процессе деформации. Теория пересечения двойника скользящей дислокацией — перегибы на двойниковой границе и ее искажение, при этом общим здесь является однородность деформации по всему кристаллу во время скольжения или в двойниковой прослойке при двойниковании. Однако в деформированных кристаллах распределение дислокаций неравномерное, а возникающие дислокационные сетки и субграницы при избытке дислокаций одного знака приводят к микроскопической неоднородности, создавая локальную разориентировку, достигающую нескольких градусов. При простейших видах деформации (растяжение, сжатие) возникают значительные разориентировки. Для неоднородных и неравномерных полей напряжений и деформаций в макромасштабе (прокатка, кручение, изгиб, прессование и т. п.) появление существенной разориентировки неизбежно.  [c.148]

Как вычисляется крутящий момент Л/кт, соответствующий началу пластических деформаций при кручении бруса круглого сечения  [c.314]

Производя испытания на растяжение, мы фиксируем свое внимание на зависимости между напряжениями и деформа- циями и замечаем, что по достижении предела текучести в образце возникают ощутимые остаточные деформации. Таким образом, условием перехода из упругого состояния в пластическое является равенство а=а . При сжатии получим Аналогичным образом можно поступить и в случае чистого сдвига. Испытывая на кручение тонкостенную трубку, нетрудно выявить величины напряжений в характерных точках диаграммы сдвига и, назначив допускаемую величину пластических деформаций, установить условие перехода в пластическое состояние.  [c.294]

Существующее многообразие принципов классификации механических испытаний [16, 45, 46] позволяет сравнительно свободно решать самые различные задачи. В частности, при изучении процесса деформационного упрочнения важно проводить испытания так, чтобы металл имел возможность максимально проявить свои пластические свойства. Предложенная Фридманом [1] оценка жесткости разных видов механических испытаний через коэффициент мягкости а, основанная на анализе всех возможных видов напряженного и деформированного состояния, позволяет расположить наиболее распространенные из них в следующий ряд (по степени увеличения способности металла к пластической деформации) трехосное растяжение — двухосное растяжение — одноосное растяжение — кручение — одноосное сжатие — трехосное сжатие.  [c.30]

При кручении как наименее жестком напряженном состоянии для развития пластической деформации создаются более благоприятные условия, чем при одноосном растяжении, следовательно, в этом случае возможен более интенсивный распад  [c.164]

Книга соответствует традиционной программе машиностроительных вузов. Излагаются следующие разделы курса сопротивления материалов растяжение, кручение, изгиб, статически неопределимые системы, теория напряженного состояния, теория прочности, толстостенные трубы и "онкостенные оболочки, прочность при переменных напряжениях, ргсчеты при пластических деформациях устойчивость и методы испытаний. По сравнению с предыдущими изданиями она сокращена за счет разделов, которые на лекциях обычно не читаются, и дополнена некоторыми элементарными сведениями по композиционным материалам, получающим в настоящее время повсеместное распространение и общее признание.  [c.2]

Допускаемую величину касательного напряжения при чистом сдвиге можно было бы определить таким же путем, как и при линейном растяжении и сжатии, т. е. экспериментально установить величину опасного напряжения (при текучести или при разрушении материала) и, разделив последнее на тот или иной коэффициент запаса прочности, найти допускаемое значение касательного напряжения. Однако этому на практике мешают некоторые обстоятельства. Деформацию чистого сдвига в лабораторных условиях создать очень трудно — работа болтов и заклепочных соединений осложняется наличием нормальных напряжений при кручении сплошных стержней круглого или иных сечений напряженное состояние неоднородно в объеме всего стержня, к тому же при пластической деформации, предшествующей разрушению, про 1сходнт перераспределение напряжений, что затрудняет определение величины опасного напряжения при испытаниях на кручение тонкостенных стержней легко может произойти потеря устойчивости стенки стержня. В связи с этим допускаемые напряжения при чистом сдвиге и кручении назначаются на основании той или иной теории прочности в зависимости от величины устанавливаемых более надежно допускаемых напряжений на растяжение.  [c.145]

Поскольку, как было показано мною, 2/3) , где N=0, 2, 4, б, 8, 10, 13, 18, все восемь известных значений деформации перехода для пластической деформации кристаллов обозначены римскими цифрами. Эти значения деформаций перехода собраны в табл. 138. Все значения деформаций найдены относительно неде-формированного состояния, т. е. являются значениями условной деформации. Все значения в табл. 138, кроме заключенных в круглые скобки для кручения при больших деформациях, подтверждены экспериментально.  [c.308]


В 1951 г. Бернард Будянский, Норрис Ф. Доу, Роджер В. Петерс и Роланд П. Шепард (Budiansky, Dow, Peters and Shepard [1951, 1]) испытывали тонкостенные цилиндры из алюминиевого сплава 14 S-T 4, нагружая образцы при сжатии до деформаций порядка 0,005, после чего они вводили одновременно со сжатием кручение при заранее заданном соотношении нормальных и касательных напряжений. Их результаты, которые вызвали серьезную дискуссию по поводу того, могли или нет авторы принимать линейный характер функции отклика, оказались не соответствующими ни их версии деформационной теории, ни теории течения, ни предложенной ими теории скольжения при пластической деформации. Анизотропия в крупных цилиндрах, изготовленных при помощи штамповки, особенности изучавшихся сплавов и использование жестких испытательных машин, для которых деформации были предписаны, должны были быть факторами, влияющими на результаты опытов этих авторов,  [c.309]

Деформационная анизотропия. Развитие анизотропии упругих свойств при пластической деформации первоначально изотропного материала (деформационная анизотропия) является хорошо установленным экспериментальным фактом. Этот факт должен (в принципе) учитьюаться при определении пластической деформации и формулировке принципа гра-диентальности в теории течения. Соотношение типа (5) связано с появлением на рубеже 60-х гг. результатов, свидетельствующих о существенном (порядка 20% и выше) изменении средних на разгрузке модулей и о нелинейности разгрузки. Последующие исследования, вьшолненные на различных (в основном малоуглеродистых) сталях, меди, латуни, никеле, позволили сделать общие вьюоды в результате пластической деформации модули упругости Е, G убьюают (после предварительного растяжения Е изменяется значительнее, чем G после кручения — наоборот), причем наиболее быстро на начальном неупругом участке, и достигают минимума при  [c.51]

ДЛЯ пластичных металлов, был П. Людвик ). Он пытался построить такую кривую, исходя из результатов испытаний на растяжение, сжатие и кручение и предполагая, что внутреннее сопротивление сдвигу при пластических деформациях не зависит от нормальных напряжений и что максимальные касательные напряжения х 1акс. в плоскостях скольжения можно выразить в функции  [c.284]

Эффективен наклеп в напряженном состоянии, представляющий собой сочетание упрочнения перегрузкой с наклепом. При этом способе деталь нагружают нагрз зкой того же направления, что н рабочая, вызывая в материале упругие пли упруго-пластические деформации. Поверхностные,слои металла, подвергающиеся действию наиболее высоких напряжений растяжения (случай изгиба) или сдвига (случай кручения), подвергают наклепу (например, дробеструйной обработкой). После снятия нагрузки в поверхностном слое возникают остаточные напряжения сжатия, гораздо более высокие, чем при действии только перенапряжения или только наклепа.  [c.320]

Пластическое разрушение сопровождается пластической деформацией, о чем свидетельствуют утонение образца и т-ровная волокнистая поверхность излома. При пластическ( ivi разрыве кроме нормальных напряжений в разрушении учас -вуют и касательные, так как пластическая деформация вызы вается действием только касательных напряжений. В т( х слу чаях, когда разрушение происходит под действием только нормальных или только касательных напряжений, внешним признаком может служить вид разрушения разная ориентация излома относительно направления главных напряжений ь образце. Наглядно это проявляется при разрушении кручением пластичной и хрупкой сталей.  [c.112]

Смену элементарного механизма, контролирующего разрушение при переходе к условиям на1ружения, запрещающим развитие пластической деформации, экспериментально показали Н.Н. Демиховская, И.Е. Куров и В.А. Степанов. В данном случае опыты проводили на алюминии высокой частоты (99,96%) при растяжении и кручении, причем образцы подвергали предварительной низкотемпературной (при глубоком охлаждении) деформации. Для сравнения испытывали также алюминий без предварительной деформации и с предварительной деформацией без глубокого охлаждения. Полученные экспериментальные данные по энергии активации Uq процесса разрушения приведены в таблице 4.1 совместно с данными по то и у.  [c.266]

Пример 10.11. При решении задачи об упруго-пластинеском кручении стержня с круглым поперечным сечением мы столкнулись с необходимостью иметь диаграмму сдвига материала в области пластических деформаций. Эту диаграмму можно получить либо из прямого испытания на кручение, либо же перестройкой диаграммы растяжения при помощи соотношений пластичности.  [c.377]

Максимальные касательные напряжения при кручении действуют в крайних волокнах и пластические деформации возникают сначала на контуре сечения. Пластическая зона при увеличении нагрузки будет развиваться внутрь сечения. Для идеально упругопластичного материала переход в предельное состояние показан на рис. 11.15, а —г.  [c.190]


Смотреть страницы где упоминается термин Кручение при пластической деформации : [c.2]    [c.134]    [c.404]    [c.305]    [c.450]    [c.189]    [c.473]   
Смотреть главы в:

Курс теории упругости Изд2  -> Кручение при пластической деформации


Курс теории упругости Изд2 (1947) -- [ c.403 ]



ПОИСК



Деформация кручения

Деформация пластическая

Кручение бруса круглого поперечного сечения при наличии пластических деформаций

Кручение пластическое

Кручение с учетом пластических деформаций

Кручение стержней 376—383 — Распределение касательных напряжени с учетом пластических деформаций

Кручение стержня круглого поперечного сечения при наличии пластических деформаций

Неустойчивость равномерного режима пластической деформации при кручении

Неустойчивость равномерного режима пластической деформации при кручении стержня кругового сечения из мягкой стали

Образование слоев пластической деформации в стальном стержне, подвергнутом кручению Влияние вырезов и отверстий

Пластическая деформаци

Щеглов Н. Н., Пределы выносливости и пластические деформации сталей в некоторых случаях совместного изгиба и кручения



© 2025 Mash-xxl.info Реклама на сайте