Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температуры закалки и отпуска стали штамповой

Температуропроводность стали 1 —34 Температуры закалки и отпуска стали штамповой -2 — 369 --ковочные — Влияние на временное сопротивление разрыву стали  [c.440]

Температуры ( С) закалки и отпуска теплостойких штамповых сталей  [c.174]

Среди инструментальных сталей, относящихся к этой группе наименьшей устойчивостью против отпуска и теплостойкостью обладают штамповые стали для горячего деформирования с 2,5% Сг и 4% W (сталь WS и ей подобные), однако эти стали обладают наибольшей вязкостью. Вязкость штамповых инструментальных сталей для горячего деформирования марки W3, в основном подвергшихся переплаву, наряду с малым пределом текучести при растяжении (сто,2= 1450-г 1500 Н/мм ) не уступает вязкости рассмотренных выше инструментальных сталей повышенной вязкости. Однако инструментальная сталь марки W3 обычного качества менее пригодна при циклически изменяющихся тепловых нагрузках (см. рис. 33). Но по сравнению со сталью марки W2 ее можно охлаждать в воде, и она не требует такой тщательной термической обработки. Влияние продолжительности и температуры закалки и отпуска на механические свойства инструментальной стали марки W3 можно видеть из табл. 116.  [c.268]


Температуры закалки и отпуска штамповых сталей для горячего деформирования [2, 48]  [c.1232]

Механические свойства штамповых сталей при комнатной температуре могут быть оценены следующими цифрами (после закалки и отпуска при 550 С) ав=120 130 кгс/мм , б=Ю-Ыа%, il) = 40- i45%, а =4-н5 Kr / M .  [c.440]

Для изготовления кузнечно-штамповочного инструмента применяются так называемые штамповые стали. Твердость НВ наиболее распространенных марок этих сталей в рабочем состоянии (после закалки и отпуска) при различных температурах характеризуется следующими данными  [c.20]

Закалка и отпуск штампов. В табл. 34 приведены температуры критических точек и практические температуры нагрева штамповых сталей для закалки [1], [67], [71],  [c.895]

К химическим соединениям в легированной стали, в которых преобладает металлическая связь, относятся карбиды, нитриды, бориды, гидриды, интерметаллические фазы или металлические соединения. Из них наиболее важны карбидные фазы. В конструкционных сталях изменение степени дисперсности карбидов и когерентной связи их решетки с решеткой матрицы (а-фазы) в зависимости от условий термической обработки—наиболее эффективное средство повышения и регулирования прочности. В инструментальных сталях карбиды увеличивают стойкость против износа, уменьшают рост зерна при температуре нагрева для закалки, усиливают устойчивость структуры против отпуска, сообщают вторичную твердость (в быстрорежущей и штамповой стали). В жаропрочных сталях карбиды служат упрочняющими фазами. В магнитных сталях карбиды повышают коэрцитивную силу. В других случаях, например в нержавеющих и кислотостойких сталях, карбиды играют отрицательную роль, понижая стойкость против общей коррозии и при определенном расположении (по границам зерен) вызывая межкристаллитную коррозию. Важное значение в стали имеют и нитриды, которые препятствуют укрупнению зерна при нагреве и играют роль упрочняющих фаз и др. При содержании в стали повышенного количества азота образуются карбонитридные фазы.  [c.566]

Температуры отжига, высокого отпуска и закалки штамповых сталей группы Зг  [c.1225]

Температура отпуска для инструмента горячего деформирования выбирается из условия получения достаточно высокой твердости, прочности и вязкости. Для высоколегированных штамповых сталей горячего деформирования целесообразен предварительный низкотемпературный отпуск при 250—320° G, а затем по режимам, указанным в табл. 2. Штампы сложной формы, в которых есть опасность образования трещин в процессе работы, нужно дополнительно отпускать при температурах, на 20—30° ниже приведенных в табл. 2 и 7. Это требование необходимо строго выполнять для сталей, которые имеют остаточный аустенит после закалки.  [c.736]


Твердость наплавленного металла Х12 сравнительно невысока и составляет HR 40—44, что объясняется наличием в структуре большого количества остаточного аустенита. Твердость можно увеличить высоким отпуском при температуре 500—550° С (до HR 55—60). Для возможности механической обработки наплавленное изделие отжигают. Отжиг заготовок следует вьшолнять по изотермическому циклу нагрев до температуры 870—900° С, выдержка 1,0—2,0 ч, охлаждение с печью до температуры 700° С, выдержка 5—8 ч, дальнейшее остывание на воздухе. Твердость после такого отжига составляет HR 25—29. Закалку производят на первичную или вторичную твердость с последующим отпуском по режимам для инструментальных штамповых сталей типа Х12.  [c.741]

Изменение механических свойств инструментальной стали К14 в зависимости от температуры закалки и отпуска, а также продолжительности обработки представлено в табл. 105. Из этих данных (см. также рис.. 202) следует, что увеличение температуры закалки стали марки К14 выше 1000° С только в незначительной степени улучшает прочностные характеристики, при этом вязкие свойства ухудшаются. Стали, полученные методом электрошлакового переплава и, кроме того, хорошо обработанные путем пластической деформации, по сравнению с обычными инструментальными сталями, имеют более высокие значения вязкости при одних и тех же значениях прочности. Поэтому стали, полученные способом переплава, можно закаливать на ббльшую прочность (твердость) и благодаря этому увеличить износостойкость и долговечность инструмента. С уменьшением скорости охлаждения (охлаждение в масле или в соляной ванне вместо охлаждения на воздухе) или же с увеличением количества заэвтектоидных карбидов и содержания бейнита (см. рис. 199, б) в значительной степени ухудшаются прочностные и главным образом вязкие свойства сталей. Наиболее предпочтительные свойства получаются при ступенчатой закалке в соляной ванне. На прогрев детали с толщиной поперечного сечения 100 мм требуется около 15 мин. При закалке в масле нет необходимости держать детали в масле до полного охлаждения, а достаточно только до тех пор, пока температура сердцевины не достигнет 500° С. При толщине поперечного сечения 100 мм на охлаждение требуется таким образом около 8 мин, а при толщине 250 мм 25 мин. Повышение температуры отпуска выше 600° С приводит к ухудшению вязких свойств стали марки К14, а также сталей, полученных способом электрошлакового переплава. Сталь марки К14 более склонна к обезуглероживанию, чем стали марок К12 и К13. Обезуглероживание можно уменьшить путем цементации упаковкой в ящики с твердым карбюризатором При повышении температуры отпуска теплостойкой штамповой инструментальной стали для горячего деформирования марки 40 rMoV5.3 с содержанием 3% Мо и 5% Сг снижаются прочностные характеристики, растет значение ударной вязкости, значение вязкости при разрушении вначале также увеличивается. Путем отпуска при температуре 560—580° С можно добиться более благоприятного сочетания свойств. Отпуск при температуре выше 600° С охрупчивает эту сталь в меньшей степени, чем сталь К14.  [c.249]

Третья группа — теплостойкие стали. В результате закалки и отпуска от температур 500—625° С такие стали приобретают высокую твердость, стойкость и прочность и сохраняют эти свойства при нагреве до температур 625—740° С. Эти стали обладают высокой прокаливаемостью. Как и стали предыдущих групп, они подразделяются на подгруппы высокой твердости (быстрорежущие стали, Р6М5, Р6МЗ) и повышенной вязкости (штамповые).  [c.23]

Термическая обработка штамповых сталей состоит из закалки и отпуска и для различных марок сталей отличается в основном температурой обработки. Штамп нагревают до температуры закалки (830—860° С для стали 5ХНМ, 1030—1050° С для стали 4Х5В2ФС), затем охлаждают в масле до температуры-200—250° С и сразу переносят в печь на отпуск.  [c.184]

Механические свойства штамповых сталей при комнатной температуре могут быть оценены следующими цифрами (после закалки и отпуска 550°) ав=120—130 кГ1мм , В=10—13%, ф=40—45%, а =4—5 кГ-м1см . Такими свойствами обладают все стали, указанные в табл. 51, за исключением  [c.313]


Благоприятное влияние вольфрама на структуру и свойства штамповых сталей при увеличении его содержания до 5,0 % связывают с увеличением количества карбида МевС по отношению к карбиду Ме С , что ведет к формированию более дисперсных выделений Повышение содержания вольфрама до 5,0—6,0 % способствует увеличению эффекта дисперсионного твердения после закалки и высокого (500—550 °С) отпуска Вольфрам повышает теплостойкость комплексно легированных штамповых сталей и механические свойства как при комнатной, так и при повышенных температурах  [c.381]

Остаточный аустеиит инструментальных сталей. Его влияние на свойства. Остаточный аустенит фиксируется в структуре закаленных сталей, содержащих более 0,4—0,5% С. Количество остаточного аустенита зависит от его состава, получаемого при нагреве до температуры закалки, условий охлаждения и в меньшей степени от величины зерна. Состав остаточного аустенита определяет его устойчивость при последующем отпуске. Он почти полностью превращается в результате нагрева при 200—350° С нетеплостойких углеродистых н низколегированных сталей и при 500—580° С теплостойких штамповых н быстрорежущих сталей, У полутеплостойких сталей с 6—18% Сг он устойчив до 450—500° С, вследствие чего практически полностью сохраняется при обработке на первичную твердость. Точно также он почти полностью сохраняется в структуре нетеплостойких многих полутеплостойких сталей после отпуска на высокую твердость и может значительно влиять на их основные свойства и почти не сохраняется в теплостойких и полутеплостойких сталях, обрабатываемых на вторичную твердость. Количество остаточного аустенита, присутствующего в инструментальных сталях различных классов после закалки, приведено ниже.  [c.381]

Распад остаточного аустенита. Остаточный аустенит теплостойких сталей (штамповых и быстрорежущих) из-за высокой легированмостн весьма устойчив и превращается лишь в результате отпуска выше 500° С. Во время выдержки при 500—600° С из аустенита выделяется часть углерода и легирующих элементов в виде карбидов. Так, для стали состава 1,25% С, 5% W, 4% Сг, 4% Мо, 1,5% V после закалки с 1215° С и отпуска при 560° С 24 ч период решетки аустенита уменьшается с 3,617 до 3,606 А. Обедненный аустенит превращается в мартенсит при охлаждении. Температура начала мартеиситного превращения остаточного аустенита повышается тем сильнее, чем больше была выдержка или температура отпуска, т. е. чем больше был обеднен остаточный аустенит.  [c.384]

При отпуске легированных вольфрамом штамповых сталей для горячего деформирования в интервале температур 200—400" С твердость убывает (рис. 213) вследствие выделения и коагуляции карбидов типа цементита. При температуре отпуска, превышающей 400° С, наблюдается возрастание твердости. Это возрастание твердости тем больше и тем шире (т. е. распространяется на интервал более высоких температур), чем больше легирующих компонентов в стали (и в твердом растворе при нагреве до температуры закалки). Твердость (прочность) вольфрамовой стали (X45 o rWV5.5.5), содержащей 5% Со, является наибольшей потому, что вследствие большей легированности твердого раствора исходная твердость также больше, чем у сталей марок W3 и W2. Возрастание твердости вызывается выделением карбидов МбгС с Ме С. Карбидная фаза МеС в значительных количествах возникает только в инструментальных сталях, содержащих более 1 % V. В процессе отпуска при температуре выше 620—650° С у инструментов, изготовленных из этих  [c.267]

При рассмотрении сталей перлитного класса наиболее удобна классификация, разделяющая их в зависимости от содержания углерода, поскольку этим определяются такие особенности, как деформируемость и свариваемость, твердость мартенсита после закалки, а также уровень магнитных свойств. Содержание углерода определяет и режимы термической обработки, используемые для придания неаустенитным сталям оптимальных свойств для малоуглеродистых сталей это преимущественно нормализация для среднеуглеродистых, как правило, улучшение [закалка с высоким (600—700 °С) отпуском] для высокоуглеродистых (за исключением быстрорежущих) — закалка с низким (150—200 °С) отпуском. Отпуск штамповых сталей с 0,45 — 0,7 мае. % С и быстрорежущих сталей проводится при средних температурах (450—580 °С). Легирование сталей позволяет изменять ряд свойств прокаливаемость, механические и другие характеристики, термопрочность и термостойкость и, следовательно, диапазон температур возможного применения сталей.  [c.41]

Отпуск (низкий, средний или высокий) применяют для снятия остаточных напряжений и получения устойчивой структуры, а следовательно, свойств металла после закалки. Низкий отпуск — это нагрев стали до 150—200°С с последующим охлаждением. ЧОтпуску подвергают инструментальные и штамповые стали, когда надо сохранить высокие твердость и износостойкость. Средний отпуск назначают для деталей, которые должны иметь высокую твердость хорошие упругие характеристики (пружины, рессоры т др.). Для среднего отпуска стальные детали нагревают до 300— -500°С. Высокий отпуск (температура нагрева 500—650°С) применяют для деталей, которые должны иметь достаточную прочность, высокие вязкость и пластичность. Высокому отпуску подвергают детали из конструкционных сталей. Закалку и последующий высокий отпуск иногда называют улучшением.  [c.30]

Из-за сильного выделения заэвтектоидных карбидов легированные вольфрамом штамповые инструментальные стали для горячего деформирования охлаждать на воздухе нецелесообразно. Более предпочтительным является охлаждение в масле или ступенчатая закалка в соляной ванне, охлаждающее влияние которой как раз наиболее эффективно в, интервале высоких температур. Путем закалки в масле или ступенчатой закалки в соляной ванне можно Достить большей твердости после отпуска и вязкости, при этом процесс дисперсионного твердения становится более эффективным, распределение карбидов более равномерным.  [c.267]


Нами найден один из режимов обработки для предотвращения ведения штамповой стали Кетос он состоит из закалки, отпуска и улучшения до твердости R . = 55—60 с последующим снятием внутренних напряжений перед шлифованием окончательного размера. После шлифования деталь подвергают улучшению путем циклической термообработки при этом деталь попеременно погружается в ванну, наполненную сухим льдом, ацетоном или другой жидкостью, и в горячее масло. Деталь остается в каждой ванне достаточно долго, чтобы дать возможность выравняться температуре для большинства случаев достаточно трех циклов погружения. Температуры ванн не критические масло нагревается до такой температуры, чтобы было возможно с ним работать, но не столь высокой, чтобы вызвать размягчение детали. Такая термообработка полезна как для золотников, так и для втулок и почти обязательна для деталей плоских золотников. Окончательный лапинг-процесс выполняется уже после улучшения.  [c.223]


Смотреть страницы где упоминается термин Температуры закалки и отпуска стали штамповой : [c.59]    [c.796]    [c.266]    [c.415]    [c.120]    [c.118]    [c.805]    [c.380]    [c.210]    [c.277]    [c.1228]   
Ковка и объемная штамповка стали Том 2 издание 2 (1968) -- [ c.2 , c.369 ]



ПОИСК



Закалк

Закалка

Закалка Отпуск

Закалка и отпуск стали

Закалка стали ill

Закалка стали штамповой

Отпуск

Отпуск Температуры

Отпуск стали

Отпуск стали 313 — Температура

Отпуск стали штамповой

Отпуская ось

Температура закалки

Температуры закалки и отпуска стали

Температуры закалки и отпуска стали стали штамповой

Температуры закалки и отпуска стали стали штамповой

ШТАМПОВЫЕ СТАЛ



© 2025 Mash-xxl.info Реклама на сайте