Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Течение турбулентное проводящей жидкости

При пленочном кипении на поверхности вертикальных труб и пластин течение пара в пленке обычно имеет турбулентный (вихревой) характер. Поверхность пленки испытывает волновые колебания, толщина пленки растет в направлении движения пара. Опыты показывают, что теплоотдача практически не зависит от высоты поверхности нагрева, а следовательно, и от расхода пара в пленке. В целом процесс оказывается во многом аналогичным свободной конвекции однофазной жидкости около вертикальных поверхностей. В данном случае подъемная сила, определяющая движение пара в пленке, определяется разностью плотностей жидкости и пара g (р —р ). Расчет теплоотдачи в этом случае может проводиться по формуле [53 ]  [c.135]


Для анализа физических особенностей этих процессов рассмотрим результат экспериментального исследования [70]. Опыты проводились при движении пара в прямых горизонтальных трубах с внутренним диаметром = 0,00285. .. 0,01 м, при давлениях пара от 0,4 до 21,6 МПа, скоростях рсо = 400. .. 4000 кг/(м -с) и плотностях теплового потока <7 = 2-10 . .. 1,6-10 Вт/м . По всей длине экспериментального участка наблюдалось турбулентное течение жидкой и паровой фаз, которое существует, когда число Рейнольдса, рассчитанное по параметрам насыщенного потока жидкости, превышает 2 10  [c.150]

Исследования внешнего турбулентного пограничного слоя капельной жидкости с изменяющейся вязкостью вообще не проводились. Весьма вероятно, что в этом случае справедливы результаты расчета теплообмена и сопротивления при турбулентном течении жидкости в трубе, приведенные в табл. 12-1.  [c.325]

Расчет теплообмена при турбулентном течении жидкости в изогнутых трубах можно проводить но формуле (86,2), вводя множитель увеличения  [c.336]

Гидравлическое сопротивление. Исследование гидравлического сопротивления в гладкой и накатанных трубах проводилось при изотермическом и неизотермическом течениях жидкости. Было установлено, что при течении в трубах с накаткой коэффициент гидравлического сопротивления практически не зависит от шага накатки S/B, относительная глубина накатки /О заметно влияет на гидравлическое сопротивление Влияние числа Re на гидравлическое сопротивление в накатанных трубах идентично его влиянию в гладких трубах. Подобная картина наблюдалась другими авторами [184] при турбулентном режиме течения жидкости.  [c.535]

В последнее время проводятся эксперименты по выявлению роли примесей, вводимых в малых концентрациях в жидкость в пограничном слое, в затягивании протяженности ламинарного участка или в уменьшении интенсивности уже развившейся турбулентности. Особенно полезными в этом смысле оказываются высокополимерные примеси, введение которых даже в очень малых дозах значительно сказывается на режиме течения.  [c.674]

Как уже указывалось в 5 главы IV, различие ламинарного установившегося течения вязкой несжимаемой жидкости и турбулентного установившегося (осреднённого) течения той же жидкости в цилиндрической трубе проводится обычно в отношении следующих необходимых признаков 1) характера траекторий частиц,  [c.434]

Перед заполнением жидкостью ячейки продувают азотом с целью удаления из них кислорода воздуха. Коррозионные растворы также вначале обескислороживают, а затем насыщают H2S и СО2 до заданной концентрации. Для контроля коррозии используют образцы из мягкой стальной ленты размерами 150x12x0,2 мм. Исходная масса образцов — до 10 г. Для получения однородной щероховатости поверхности образцы перед опытом обрабатывают карбидом кремния (SiС) в аппарате барабанного типа путем совместного перемешивания. С целью имитации турбулентного перемешивания коррозионных сред испытания осуществляют путем вращения ячеек в вертикальной плоскости со скоростью около 20 об./мин в течение 72 ч. Имитацию ламинарного движения жидкости или очень слабого ее перемешивания, характерного для застойных зон трубопроводов, проводят очень медленно вращая колеса (1-2 об./мин и менее) при угле наклона плоскости вращения 10-20°.  [c.321]


Исследования в области теплообмена в потоке химически реагирующих газовых смесей проводились в ИВТ АН СССР [3.36—3.38]. Б. С. Петухов и В. Н. Попов [3.36, 3.37] использовали разработанный ими метод расчета теплообмена и сопротивления трения вдали от входа в трубу при переменных физических свойствах жидкости в случае течения равновесно диссоциирующих сред. В [3.36] приведен расчет теплообмена и сопротивления трения при турбулентном течении в трубе равновесно диссоциирующего водорода. На основе расчетных данных по теплоотдаче получено критериальное уравнение, обобщающее эти данные с точностью 5%  [c.95]

Весьма ограниченны данные по турбулентной структуре нестационарных неизотермических течений в каналах. В работе Б.В. Перепелицы, Ю.И. Пшеничникова, Е.М. Хабахпашевой [44] представлены результаты измерений статистических характеристик пульсаций температуры в нестационарном турбулентном потоке воды в диапазоне чисел Рейнольдса Ке = = (1,36. .. 6,1) 10 и частотах колебаний расхода от 0,4 до 4 Гц. Эксперименты проводились в канале прямоугольного поперечного сечения с обогревом одной стенки и при наличии предварительного, участка гидродинамической стабилизации. На входе в рабочий участок устанавливался пульсатор, создающий колебания расхода жидкости. Мгновенные значения расхода изменялись до 5 раз. Поскольку тепловьоделение в обогреваемой стенке при этом не менялось, при увеличении расхода температура стенки должна падать, а при замедлении— возрастать. Соответственно изменяется по времени и температура потока вблизи стенки. Характер перестройки усредненного профиля температуры во времени виден из распределения скорости изменения температуры 3 Т Ът в течение одного периода. На рис. 3.6 представлено изменение величины ЪТ Ът от фазы колебания расхода на различных расстояниях от стенки. Расход жидкости через канал падает в промежуток времени ЭГ/Эт между 0,3 и 0,5. .. 0,6 и возрастает между 0,5. .. 0,6 и 1. Как видно из рисунка, наиболее сильный рост температуры наблю-  [c.87]

Опытные исследования проводились лишь для плоского течения Ку-этта [Л. 10]. Результаты этих исследований удовлетворительно согласуются с фо рмулой (31). Данные, полученные в работе [Л. 11], следует относить к случаю течения жидкости с вихрями и, строго говоря, нельзя использовать для сравнения с теорией, предполагающей чисто турбулентное течение жидкости.  [c.397]

Программный комплекс Flow Vision, созданный ООО "ТЕСИС", предназначен для моделирования трехмерных течений жидкости и газа в технических и природных объектах. Пакет позволяет проводить визуализацию течений методами компьютерной графики. Возможно моделирование стационарных и нестационарных течений несжимаемой и сжимаемой жидкостей, а также моделирование потоков со свободной поверхностью. Используется адаптивная расчетная сетка и различные модели Турбулентности.  [c.98]

При расчете сложных трубопроводов составляется баланс расходов в узловых точках (равенство притоков и оттоков жидкости) и баланс напоров на кольцевых участках (равенство нулю алгебраической суммы потерь напора для каждого кольца). Для ламинарного режима течения задача сведется к системе линейных алгебраических уравнений. Для турбулентного режима течения задача становится значительно сложнее необходимо решать систему трансцендентных уравнений, которая не имеет общего алгоритма решения. Во многих случаях задачу расчета сложной системы трубопроводов при установившемся режиме течения в турбулентной области проще решать методом установления, используя уравнение Бернулли для не-установившегося течения. В этом случае расчет сводится к задаче Коши для системы обыкновенных дифференциальных уравнений (см. раздел 15.2), которая алгоритмически ясна и имеет несколько стандартных программ для решения. Гидравлический расчет трубопроводов, особенно сложных, обычно проводится с помощью ЭВМ. Более подробно обсуждаемый вопрос целесообразно изучать на практических занятиях путем решения задач.  [c.137]


Существование решения представляет собой в некотором смысле меньшую проблему в том случае, когда расчеты ведутся по нестационарным уравнениям, а этот подход оказался, вообще говоря, наиболее успешным при решении полных уравнений для течения вязкой жидкости. Будучи уверенными в справедливости нестационарных уравнений Навье — Стокса, мы склонны думать, что численное решение, полученное по физически реальным начальным условиям, имеет определенную ценность. Если же стационарного решения не существует, то, проводя нестационарные конечно-разностные расчеты, мы можем убедиться в этом. Может случиться, однако, что непрерывное течение, которое неустойчиво по отношению к малым возмущениям, будет оставаться устойчивым при численном моделировании. Это может иметь место как при крупномасштабной неустойчивости (такой, как отрыв вихрей), так и нри мелкомасштабной турбулентности в сдвиговом слое. Кроме того, внесение в нолные уравнения Навье — Стокса приближенных допущений (например, линеаризации Буссинеска) лишает уверенности в существовании решения. Это особенно относится к тем случаям, когда приходится работать с непроверенными уравнениями состояния. Годунов и Семендяев [1962] показали, что при использовании определенного класса уравнений состояния численное решение газодинамических задач может быть неединственным.  [c.25]

Абсорбция и десорбция NH3 в лабораторных условиях в режиме противотока в трубках с орошаемыми стенками изучались в работах [77, 155, 234—236]. Размеры трубок и скорости потоков газа и жидкости в указанных выше работах суммированы в табл. 10.3, где также указаны интервалы изменения параметров е и lle для двух режимов течения газа ламинарного (Rer 2300) и турбулентного (Rer > 2300). Сравнение параметров и lle в таблице и на рис. 10.2.4 показывает выполнение во всех опытах для ламинарного потока газа условия, что сопротивление массопередаче сосредоточено в газовой фазе, следовательно, расчет массопередачи следует проводить на основании уравнения типа Гретца—Пикфорда, которое позволяет проводить расчет массопередачи, если сопротивление последней сосредоточено только в газовой фазе.  [c.194]

Принцип расчета потерь давления по тракту теплоносителя как для ламинарного, так и для турбулентного режимов течения пара одинаков. Различны только формулы для расчета, соответствующие режиму течения. Вычисление потерь давления начинают с определения местоположения мокрой точки методом итераций. Используя значение мощности Q, вычисляют инерционный вклад в изменение давления пара по длине зоны испарения. Затем определяют падение давления в жидкости и паре за счет трения только на длине зоны конденсации. Если инерционный эффект преобладает или равен сумме потерь давления за счет трения в жидкости и паре по длине зоны конденсации, то мокрая точка находится в начале зоны охлаждения трубы и величина /эф учитывает только длины зон испарения и адиабатической. Если же инерционный эффект меньше суммы потерь давления вследствие трения по длине зоны конденсации, то их соотношение проверяют методом итераций последовательно для уменьшающихся участков зоны теплоотвода от ее начала к концу. Распределение инерционного вклада па длине зоны конденсации принимают параболическим (вершина параболы — в конце зоны конденсации). Через определенный заданный интервал по длине зоны конденсации в направлении от начала ее к концу в каждой точке при проверке соотнощения вкладов в потери давления учитывается только невосстано-вившаяся доля инерционного эффекта и трение на данном уменьшающемся участке. Такая проверка соотношения инерционного эффекта и трения проводится до тех пор, пока оба эффекта не будут равны. В предельном случае мокрая точка может быть в конце трубы и величина 1аф должна учитывать всю длину трубы. Если мокрая точка находится в начале зоны  [c.98]


Смотреть страницы где упоминается термин Течение турбулентное проводящей жидкости : [c.97]    [c.330]    [c.407]    [c.154]    [c.212]   
Прикладная газовая динамика. Ч.2 (1991) -- [ c.0 ]



ПОИСК



Течение в жидкости

Течение турбулентное

Турбулентное течение жидкости



© 2025 Mash-xxl.info Реклама на сайте