Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Турбина идеальная

Точка отрыва пограничного слоя 331 Турбина идеальная 35, 50 Тяга жидкостного реактивного двигателя 53  [c.596]

Пример 8-1. В регенеративном теплообменнике воздух нагревается за счет отходящих газов, выходящих из газовой турбины. Воздух нагревается от температуры ti = 30° С до температуры = = 250° С отходящие газы охлаждаются от = 400° С до /4 = = 150° С. Определить потерю работоспособности установки на 1 кг проходящего в ней газа. Газ считать идеальным, обладающим свойством воздуха, а теплоемкость воздуха и газа принять величинами постоянными. Температура окружающей среды 20° С. Теплообменник потерь не имеет.  [c.136]


Образующийся конденсат после турбины при давлении Р2 и температуре подается конденсатным насосом 5 последовательно через три подогревателя 6 и, нагреваясь до температуры более высокой, чем температура воды в конденсаторе, нагнетается питательным насосом 5 в котел. Температура питательной воды V с энтальпией г .в. Полезная работа 1 кг пара в идеальной турбине с регенерацией меньше, чем ii — к, работа пара I в цикле определяется как сумма работ от потоков пара, проходящих через турбину  [c.306]

Итак, в идеальном случае техническая работа может быть определена по изменению полных давлений без учета конкретных значений скорости газа до и после машины. Работа, передаваемая газовой турбине, является положительной (р < Pi )f а подводимая компрессором,—отрицательной p2>Pi)-  [c.36]

В своем трактате Общие принципы движения жидкости (1755 г.) Эйлер впервые вывел систему дифференциальных уравнений движения идеальной, т. е. абстрактной, лишенной трения, жидкости, положив тем самым начало аналитической механике оплошной среды. Эйлеру механика жидкостей обязана введением понятия давления в точке движущейся или покоящейся жидкости, а также выводом уравнения сплошности или непрерывности жидкости формулировкой закона об изменении количества движения и момента количества движения применительно к жидким и газообразны.м средам выводом турбинного уравнения первоначальными основами теории корабля, а также выяснением вопроса о происхождении сопротивления жидкости движущимся в ней телам.  [c.10]

В реактивном сопле. На рис. 14.4 представлена схема и изменение параметров по тракту двигателя. Идеальный цикл этого двигателя по сравнению с прямоточным двигателем дополняется процессами, идущими в компрессоре и турбине (рис. 14.5). На р—о-диаграмме процесс а-/сжатие в дис узоре процесс /-с —сжатие в компрессоре процесс г-2 — расширение в турбине 2-е — расширение в реактивном сопле. Общая степень повышения давления я ==  [c.172]

Несмотря на то что идеальной жидкости в действительности не существует, многие теоретические решения, полученные в предположении идеальности жидкости, имеют большое практическое значение. Пригодность модели идеальной жидкости для многих задач обтекания тел объясняется прежде всего тем, что идеальная жидкость сохраняет основные свойства реальных жидкостей (непрерывность, или сплошность). Кроме того, при обтекании хорошо обтекаемых тел (крыла самолета, ракеты, лопатки турбины и пр.) влияние вязкости на распределение давления по поверхности этих тел сказывается лишь в очень слабой степени. Однако влияние вязкости оказывает решающее значение при подсчете сопротивлений тел в движущейся жидкости.  [c.86]


Рассмотрим поток жидкости в каналах, образованных лопастями вращающегося рабочего колеса лопастной гидравлической машины. В этом случае движение жидкости будет сложным, состоящим из относительного движения вдоль каналов и вращательного движения вместе с рабочим колесом. Уравнение Бернулли для установившегося относительного движения можно вывести, рассматривая элементарную струйку идеальной жидкости. На рис. 144 показаны две лопасти рабочего колеса гидравлической турбины, между которыми движется поток жидкости. Рабочее колесо, а следовательно, и его лопасти вращаются вокруг оси О с угловой скоростью а) при радиусах вращения Г и г . Входное и выходное сечения канала, образованного лопастями, обозначим сечениями 1—I и 2—2.  [c.224]

Для условий предыдущей задачи определить термический к. п. д. г](, работу турбины работу компрессора /(, и массовый расход рабочего тела, если в качестве последнего будет использован углекислый газ, а теоретическая мощность установки Nt = 400 кВт. Принять среднюю теплоемкость углекислого газа с — 0,92 кДж/(кг К), считая его идеальным га.зом.  [c.130]

Случай мгновенного закрытия регулирующих органов турбин. После мгновенного закрытия регулирующих органов турбин масса воды, находящаяся в туннеле II, благодаря своей инерции будет стремиться продолжать двигаться в направлении к уравнительному резервуару III, в связи с чем горизонт воды в нем будет подниматься до определенной высоты - выше статического уровня. После этого начнется колебательное движение горизонта воды в уравнительном резервуаре относительно статического уровня. Если представить себе, что жидкость, находящаяся в туннеле II и уравнительном резервуаре III, является идеальной, то колебательное движение горизонта воды в уравнительном резервуаре III будет незатухающим (рис. 9-13, а). Колебания же горизонта реальной жидкости в резервуаре III будут затухать, как показано на рис. 9-13,6.  [c.355]

Рис. 9-13. Колебания уровня воды в уравнительном резервуаре после мгновенного закрытия регулирующего органа турбин а -для идеальной и б — для реальной жидкости Рис. 9-13. Колебания уровня воды в уравнительном резервуаре после мгновенного закрытия регулирующего органа турбин а -для идеальной и б — для реальной жидкости
Для практических расчетов газовых турбин широко применяется ts-диаграмма. Так как для идеальных газов i = / (Г), изобары и весь цикл в этой диаграмме расположатся так же, как и в Гз-диаграмме (рис. 4-10) надо только иметь в виду, что площадь внутри ts-диаграммы цикла уже не измеряет полезной работы газотурбинной установки.  [c.165]

По сравнению с идеальной установкой работа газа в действительной турбине будет меньше, а работа компрессора — больше, и внутренняя работа газа действительной газотурбинной установки составит разность работ турбины и компрессора  [c.169]

В свою очередь циклы тепловых двигателей можно разделить в зависимости от рабочего тела на две группы. Общим для циклов первой группы является использование в качестве рабочих тел газообразных продуктов сгорания топлива, которые на протяжении всего цикла находятся в одном и том же агрегатном состоянии и при относительно высоких температурах считаются идеальным газом (двигатели внутреннего сгорания, газовые турбины и реактивные двигатели). Характерная черта циклов второй группы — применение таких рабочих тел, которые в цикле претерпевают агрегатные изменения (жидкость, влажный и перегретый пар) и подчиняются законам, действительным для реальных газов (паросиловые установки).  [c.104]


Рассмотрим здесь рабочие процессы идеальной турбины и идеального компрессора более подробно и с этой целью познакомимся сначала с турбиной.  [c.88]

При движении потока через проточную часть турбины в реальных условиях происходят различного рода потери энергии на трение, завихрение и др. В идеальной газовой или паровой турбине процесс расширения считают обратимым адиабатным процессом, в котором потери отсутствуют 8д = 0, а следовательно, и i,a = 0.  [c.89]

Для определения работы, производимой идеальной паровой турбиной (рис. 7.2), обратимся к уравнению (3.9) первого начала термодинамики для открытой системы bq = di — v dp.  [c.89]

Если работа, развиваемая в турбине с учетом внутренних потерь, равна I (индикаторная или внутренняя работа), а работа идеальной турбины — /, то относительный внутренний к. п. д. [аналогично формуле (16.2)]  [c.241]

Относительный внутренний к. п. д., характеризующий степень отклонения реальной турбины от идеальной у современных мощных паровых турбин, t],,, = 0,8... 0,9.  [c.241]

Причины отклонения реальных процессов в паросиловых установках от идеальных изучаются в специальных курсах котельных установок, машин и турбин.  [c.242]

Введем ряд упрощений, подобных тем, которые были сделаны при изучении циклов двигателей внутреннего сгорания, а именно процессы сжатия и расширения будем считать происходящими по обратимым адиабатам, сгорание топлива заменим обратимым подводом теплоты, а выпуск горячих газов из турбины — обратимым отводом теплоты. При таких упрощениях можно считать, что газотурбинные установки работают Ио определенным циклам. Также примем, что рабочим телом является идеальный газ.  [c.252]

В рассмотренной идеальной абсорбционной машине все процессы в ее аппаратах принимаются полностью обратимыми. В процессе кипения в генераторе происходит полное выпаривание холодильного агента из абсорбента. Процессы подвода и отвода теплоты во всех аппаратах установки (генератор, конденсатор, абсорбер и испаритель) происходят по изотермам, а процессы расширения и сжатия в турбинах и насосе —по адиабатам.  [c.265]

Так как по принятому предположению все количество пара т, подведенное к турбине, вновь попадает в выходной патрубок, то числитель в формуле (186) в соответствии с формулой (182) в действительности идентичен работе на единицу массы пара, отданной ротору турбины. Идеальная турбина должна работать с исчезающе малой выходной скоростью, поскольку мы допустили, что кинетическая энергия на выходе не используется. В соответствии с этим располагаемая работа такой турбины изображена на рис. 18 отрезком A/sObx-вых  [c.96]

Нанинюм уравнение Бернулли для движения воздуха от1юсителыю лопаток воздушной турбины ( идеальный случаи)  [c.138]

Из формулы (6.7) видно, что КПД идеального цикла Ренкина определяется значениями энтальпий пара до турбины h и после нее hj и. энтальпии поды h 2. находящейся при температуре кипения t i. В свою очередь эти значения определяются тремя параметрами цикла давлением Pi и температурой пара перед турбиной и давлением рг за турбиной, т. е. в конденсаторе.  [c.64]

Таким образом, на сжатие воздуха в реальном цикле затрачивается боль-ujan работа, а при расширении газа в турбине получается меньшая работа по сравнению с идеальным циклом. КПД цикла получается ниже. Чем больше степень повышения давления л (т. е. выше р2>, тем больше сумма этих потерь по сравнению с полезной работой. При определенном значении я (оно тем выше чем больше Гз и внутренний относитель ный КПД турбины и компрессора т, е. меньше потери в них) работа турби ны может стать равной работе, затрачен ной на привод компрессора, а полезная работа — нулю.  [c.175]

Поэтому наибольп1ая эффективность реального цикла, в отличие от идеального, достигается при определенной (оптимальной) степени повышения давления, причем каждому значению соответствует свое Яопт (рис. 20,11). КПД простейших ГТУ не превышает 14—18%, и с целью его повышения ГТУ выполняют с несколькими ступенями подвода теплоты и промежуточным охлаждением сжимаемого воздуха, а также с регенеративным подогревом сжатого воздуха отработавшими газами после турбины, приближая тем самым реальный цикл к циклу Карно,  [c.175]

Отноашние внутренней действительной работы расишрения реальной турбины к теоретической работе идеальной турбины называют внутренним относительным к. п. д. газовой турбины  [c.282]

Пример 18-4. Определить термический к. п. д. идеального цикла ГТУ, [)аботающей с иодиодом теплоты п Л1 р onst, а также тер-МИЧССКП11 к. п. д. действительного цикла, т. е. с учетом необратимости процессов расширения и сжатия в турбине и компрессоре, если внутренние относительные к. п. д. турбины и компрессора равны 1]турб == 0,88 и tIkom = 0,85, Для этой установки известно, что Л =-= 20° С, степень повышения давления в компрессоре Р =6 температура газов перед соплами турбины ts = 900° С. Рабочее тело обладает свойствами воздуха, теплоемкость его постоянна, показатель адиабаты принять равным /г -= 1,41.  [c.295]

Для идеального цикла газовой турбины с подводом теплоты при р = onst (см. рис. 39) найти параметры в характерных точках, полезную работу, термический к. п. д., количество подведенной и отведенной теплоты, если дано Pi = 100 кПа = 27° С <з = 700° С  [c.153]

Для идеального цикла газовой турбины с подводом теплоты при р = onst (см, рис. 39) определить параметры в характерных точках, полезную работу, термический к. и. д., количество подведенной и отведенной теплоты. Дано Pi = 0,1 МПа П == 17° С ij = 600° С X — = = рз/р] = 8. Рабочее тело— воздух. Теплоемкость принять постоянной.  [c.155]


Построить график зависимости термического к. п. д., идеального цикла газовой турбины с подводом теплоты при р = onst для А = 2, 4, 6, 8 и 10.  [c.156]

Формулы (241)—(244) определяют термический к. п. д. и удельные расходы пара и теплоты в идеальном цикле паросиловой установки. Действительный цикл сопровождается неи збежными потерями, вследствие чего удельные расходы пара и теплоты увеличиваются. Так, в паровой турбине процесс расширения пара сопровождается потерями, связанными главным образом с трением.  [c.233]

Систематическое и последовательное применение методов анализа бесконечно малых к задачам механики было осуществлено впервые великим математиком и механиком Леонардом Эйлером (1707—1783), который большую часть своей творческой жизни провел в России, будучи членом открытой по указу Петра I в 1725 г. в Петербурге Российской Академии наук. В России механика начала развиваться со времен Эйлера. Творческая сила Эйлера и разносторонность его научной деятельности были поразительны. В работе Теория двилщния твердых тел Эйлер вывел в общем виде дифференциальные уравнения движения твердого тела вокруг неподвижной точки. В гидродинамике ему принадлежит вывод дифференциальных уравнений движения идеальной жидкости. Применяя метод анализа бесконечно малых, Эйлер развивает полную теорию свободного и несвободного движения точки и впервые дает дифференциальные уравнения движения точки в естественной форме. Им дана формулировка теоремы об изменении кинетической энергии, близкая к современной. Эйлером было положено начало понятию потенциальной энергии. Ему принадлелщт первые работы по основам теории корабля, по исследованию реактивного действия струи жидкости, что послужило основанием для развития теории турбин.  [c.15]

Компреосор или турбина, работающие в таких условиях, носят название идеального компрессора или идеальной турбины.  [c.35]

Как указывалось, многоступенчатое адиабатически-изобарическое расширение применяется для приближения процесса подвода теплоты к изотермическому. При этом сжиганию топлива соответствуют изобарные участки, а расширению продуктов сгорания (например, в многоступенчатой газовой турбине) — адиабатические участки. Для того чтобы учесть хотя бы приближенно потери работы на трение при адиабатическом расширении, будем считать, что состояние рабочего тела, которое предполагается идеальным газом, изменяется при этом по политроперо" = onste показателем политропы п <С k.  [c.530]

В качестве рабочего тела в ГТУ закрытого цикла с подводом теплоты при р = onst используется смесь гелия Не и ксенона Хе следующих составов а) не = 0 gxe — = 100 % б) gH, = 50 % gx - 50 % в) не - ЮО % gxe O. Считая рабочее тело идеальным газом, вычислить для этих составов термический к. п. д. цикла > < работу цикла /ц теоретическую мощность турбины полезную теоретическую мощность установки Ny.  [c.136]

Аналогично формуле (4-8 ), в которой работа идеальной газотурбинной установки представлена разностью работ турбины и компрессора, внутреннюю работу действительной газотурбинной устаноЕ5КИ можно выразить разностью работ реальной турбины и реального компрессора для этого вводится понятие внутреннего относительного к. п. д. газовой турбины T]gj он представляет отношение внутренней работы турбины WiT = г з — й к полезной работе идеальной турбины Шот = г з — h> так что  [c.168]

Внутренняя работа действительного компрессора = Uy внутренняя работа турбины = ( з — = = 1 130 — 612 = 518 кдж/кг.  [c.296]

На рис. 1.62 и 1.63 изображен цикл ГТУ с изобарным подводом теплоты. Он строится при следуюп1их допущениях. Рабочие тела — продукты сгорания и воздух — рассматриваются как одно рабочее тело — идеальный газ, который совершает цикл. Реальный процесс сжатия воздуха в компрессоре 1-2 рассматривается как обратимый адиабатный процесс сжатия идеального газа. Сжигание топлива в камере сгорания рассматривается как обратимый изобарный процесс 2-3 подвода теплоты к идеальному газу. Процесс расширения продуктов сгорания в турбине (истечение их из сопл) рассматривается как обратимый адиабатный процесс 3-4 расширения идеального газа. Наконец, реальный процесс охлаждения выходящих из турбин продуктов сгорания до температуры атмосферного воздуха рассматривается как обратимый изобарный процесс 4-1 отвода теплоты от идеального газа. В соответствии с указанными на рис. 1.63 обозначениями напишем выражение термического к. п. д. рассматриваемого цикла  [c.90]

Л2 в идеальном двигателе. Отношение удельной действительной работы 4 к теоретической 4 называется относительным внутренним к. п. д. теплового двигателя т1о1. Для паровой турбины  [c.121]

В природе существуют, конечно, только реальные газы, а диапазон состояний, в котором возможно рассматривать газ как идеальный, определяется установленной практикой необходимой точностью термодинамических расчетов. Поэтому для каждого газа (воздух, углекислый газ, перегретый водяной пар и т. д.) существует область состояний, где газ можно рассматривать как идеальный. Так, в теории двигателей внутреннего сгорания, газовых турбин и в теории компрессоров рабочее тело (воздух или газообразные продукты сгорания топлива) рассматривают часто как идеальный газ, а в теории пароэнергетических установок рабочее тело — перегретый -водяной пар —. рассматривают как реальный газ. В то же время воздух в области  [c.41]

Площадь а21Ь равна работе затрачиваемой на сжатие в адиабатном компрессоре. Как известно, работа, потребляемая адиабатным компрессором, / j = (2—1. Площадь аМЬ выражает удельную работу, получаемую от турбины, равную = 13 — 14. Удельная работа, получаемая от идеальной газотурбинной установки, очевидно равна I = — 1 /к г  [c.253]


Смотреть страницы где упоминается термин Турбина идеальная : [c.36]    [c.85]    [c.165]    [c.2]    [c.201]    [c.88]    [c.266]   
Прикладная газовая динамика. Ч.1 (1991) -- [ c.35 , c.50 ]

Прикладная газовая динамика Издание 2 (1953) -- [ c.32 ]



ПОИСК



Идеальные циклы газовых турбин и реактивных двигателей Идеальный цикл газовой турбины

Идеальный цикл газовой турбины

Циклы идеальных поршневых газовых двигателей и газовых турбин Рабочие процессы поршневых компрессоров. Циклы холодильных установок и идеальных реактивных двигателей



© 2025 Mash-xxl.info Реклама на сайте