Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизмы рассеяния и подвижность свободных носителей заряда

Если изменение абсолютного значения скорости свободного носителя заряда за счет внешнего поля на среднем пути между соударениями сравнимо с тепловой скоростью, то нельзя считать,что его подвижность не зависит от величины внешнего поля. С увеличением напряженности электрического поля выше критического значения в зависимости от доминирующего механизма рассеяния подвижность свободных носителей заряда люжет как уменьшаться, так и увеличиваться. С изменением подвижности свободных носителей заряда под действие.м сильного электрического поля связаны явление разогрева электронно-дырочного газа и эффект Ганна.  [c.68]


Подвижность свободных носителей заряда при фононном механизме рассеяния пропорциональна константе деформационного потенциала. Полученные экспериментально зависимости эффективной поверхностной подвижности от поверхностных избытков и температуры в условиях квантования качественно неплохо согласуются с теоретическими предсказаниями, однако для достижения количественного согласия приходится предполагать, что константа деформационного потенциала вблизи поверхности кристалла отличается от объемного значения.  [c.55]

Повышение удельной проводимости кремния с увеличением Т в области низких температур обусловлено увеличением концентрации свободных носителей заряда — электронов за счет ионизации донорной примеси. При дальнейшем повышении температуры наступает истощение примеси — полная ее ионизация. Собственная же электропроводность кремния заметно еще не проявляется. В этих условиях концентрация свободных носителей практически от температуры не зависит и температурная зависимость удельной проводимости полупроводника определяется зависимостью подвижности носителей от температуры. Наблюдаемое в этой области температур уменьшение удельной проводимости кремния с увеличением температуры происходит за счет рассеяния свободных носителей заряда на тепловых колебаниях решетки. Однако возможен и такой случай, когда область истощения примеси оказывается в интервале температур, где основным механизмом рассеяния является рассеяние на ионах примеси. Тогда удельная проводимость полупроводника  [c.67]

Подвижность носителей. Подвижность носителей заряда определяется согласно (7.124) временем релаксации т. Время релаксации было введено в модели свободных электронов Друде для объяснения теплопроводности и электропроводности металлов. Предполагалось, что за единичнре время любой электрон испытывает столкновение с вероятностью, равной 1/т, т. е. считалось, что результат столкновения не зависит от состояния электронов в момент рассеяния. Такое упрощение является чрезмерным. Частота столкновений электрона сильно зависит, например, от распределения других электронов, так как в силу принципа Паули электроны после столкновений могут переходить только на свободные уровни. Кроме того, в твердом теле существуют различные механизмы рассеяния. Поэтому при таком описании столкновений от приближения времени релаксации отказываются. Вместо введения времени релаксации предполагают существование некоторой вероятности того, что за единичное время электрон из зоны п с волновым вектором к в результате столкновения перейдет в зону с волновым вектором ki. Эту вероятность находят с помощью соответствующих микроскопических расчетов. Такой подход, однако, очень сильно осложняет рассмотрение.  [c.249]


Подвижность носителей в полупроводниках с атомной решеткой. В полупроводниках с атомной решеткой рассеяние носителей заряда происходит на тепловых колебаниях решетки и на ионизированных примесях. Эти два механизма рассеяния приводят к появлению двух участков в температурной зависимости подвижности. При рассеянии носителей на тепловых колебаниях решетки средняя длина свободного пробега одинакова для носителей заряда с различными скоростями и обратно []роиорциональна абсолютной температуре полупроводника. Это следует из того, что рассеяние носителей заряда должно быть прямо пропорционально поперечному сечению того объема, в котором шлеблется атом, а оно пропорционально квадрату амплитуды колебания атома, определяющему энергию решетки, которая с температурой растет, как известно, по линейному закону. Поэтому, так кап 3 формуле (8-11) /ср 1/7 , а УТ, то  [c.241]

На практике эта зависимость не всегда соблюдается. Имеются случаи и более резкой зависимости подвижности от температуры, вплоть до и 1/Т . При низких температурах тепловое рассеяние, согласно (8-12), становится незначительным и в материалах с атомными решетками преобладающим оказывается резерфордовский механизм рассеяния носителей на ионизированных примесях. Дли лтого механизма характерно уменьшение рассеяния движущихся г аряженных частиц при увеличении скорости, так как они находятся меньшее время под влиянием поля рассеивающих заряженных примесных атомов. Поэтому длина свободного пробега носителя заряда растет с увеличением температуры в соответствии с выражением  [c.241]


Смотреть страницы где упоминается термин Механизмы рассеяния и подвижность свободных носителей заряда : [c.113]    [c.242]    [c.46]    [c.142]   
Смотреть главы в:

Электрорадиоматериалы  -> Механизмы рассеяния и подвижность свободных носителей заряда



ПОИСК



Газ-носитель

Заряд

Заряды свободные

Подвижность механизмов

Подвижность носителей заряда

Рассеяние носителей

Рассеяние свободными зарядами

Свободные носители заряда



© 2025 Mash-xxl.info Реклама на сайте