Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Подвижность свободных носителей заряда и ее зависимость от температуры

ПОДВИЖНОСТЬ СВОБОДНЫХ НОСИТЕЛЕЙ ЗАРЯДА И ЕЕ ЗАВИСИМОСТЬ ОТ ТЕМПЕРАТУРЫ  [c.184]

Удельная электрическая проводимость полупроводника, как показано в 9.2, определяется концентрацией и подвижностью свободных носителей заряда, значения которых зависят от температуры. Причем для концентрации свободных носителей заряда характерна экспоненциальная температурная зависимость, а для подвижности — степенная.  [c.66]


Подвижность свободных носителей заряда при фононном механизме рассеяния пропорциональна константе деформационного потенциала. Полученные экспериментально зависимости эффективной поверхностной подвижности от поверхностных избытков и температуры в условиях квантования качественно неплохо согласуются с теоретическими предсказаниями, однако для достижения количественного согласия приходится предполагать, что константа деформационного потенциала вблизи поверхности кристалла отличается от объемного значения.  [c.55]

Селен в отличие от других полупроводников обладает аномальной температурной зависимостью концентрации свободных носителей заряда она уменьшается с ростом температуры, подвижность носителей заряда при этом возрастает. Электрические свойства, селена измерялись многими исследователями, однако данные весьма противоречивы.  [c.289]

Повышение удельной проводимости кремния с увеличением Т в области низких температур обусловлено увеличением концентрации свободных носителей заряда — электронов за счет ионизации донорной примеси. При дальнейшем повышении температуры наступает истощение примеси — полная ее ионизация. Собственная же электропроводность кремния заметно еще не проявляется. В этих условиях концентрация свободных носителей практически от температуры не зависит и температурная зависимость удельной проводимости полупроводника определяется зависимостью подвижности носителей от температуры. Наблюдаемое в этой области температур уменьшение удельной проводимости кремния с увеличением температуры происходит за счет рассеяния свободных носителей заряда на тепловых колебаниях решетки. Однако возможен и такой случай, когда область истощения примеси оказывается в интервале температур, где основным механизмом рассеяния является рассеяние на ионах примеси. Тогда удельная проводимость полупроводника  [c.67]

На рис. 9.2 у вырожденного полупроводника (кривая 3) концентрация свободных носителей заряда не зависит от температуры и температурная зависимость проводимости определяется зависимостью их подвижности от температуры.  [c.67]

Рис. 8-5. Зависимость подвижности носителей заряда (а) и средней длины свободного пробега их (б) в полупроводнике от температуры при различных концентрациях примеси Рис. 8-5. Зависимость <a href="/info/16524">подвижности носителей заряда</a> (а) и <a href="/info/16031">средней длины свободного пробега</a> их (б) в полупроводнике от температуры при различных концентрациях примеси

При взаимодействии светового пучка с твердым телом изменяются параметры пучка (интенсивность, поляризация, частотный и угловой спектры и т. д.). Степень изменения каждого из этих параметров определяется свойствами как твердого тела, так и пучка, а также условиями взаимодействия. Изменение температуры твердого тела сопровождается изменением амплитуды колебаний атомов в узлах решетки и, вследствие этого, изменением межатомных расстояний, что приводит к температурной зависимости оптических параметров. Известны температурные зависимости ширины запреш енной зоны полупроводниковых и диэлектрических кристаллов, действительной и мнимой частей комплексного показателя преломления, концентрации и подвижности свободных носителей заряда, плотности фононов для каждой разрешенной моды колебаний решетки [1.41, 1.42]. Выбор характеристик пучка, условий взаимодействия пучка с объектом, а также условий регистрации сигнала позволяет проводить измерение многих температурно-зависимых параметров твердого тела. Оптическая термометрия включает последовательность преобразований в соответствии с температурой устанавливается значение физического параметра, проводится его измерение оптическим методом, затем на основе известных соотношений между температурой, физическим параметром и регистрируемым оптическим сигналом определяется температура. Эта последовательность предполагает использование внешнего зондируюш его излучения, т. е. диагностика является активной.  [c.19]

Рассмотрим механизм образования термо-э. д. с. на примере однородного по.тупроводникз. Пусть один из концов полупроводника нагрет больше, чем второй. Свободные носители заряда у горячего конца будут иметь более высокие энергий и скорости, чем у холодного. Кроме того, благодаря значительной зависимости концентрации свободных носителей заряда в полупроводнике от температуры у горячего конца концентрации свободных носителей заряда окажется больще, чем у холодного. В силу этих причин поток свободных носителей от горячего конца к холодному будет больше, чем от холодного к горячему. Если концентрация свободных электронов и дырок в полупроводнике или их подвижности неодинаковы, то концы полупроводника окажутся противоположно заряженными. Состояние равновесия наступит при равенстве потока свободных носителей заряда, обусловленного градиентом температур, потоку, обусловленному действием электрического поля, возникшего в результате разделения зарядов. Установивгоуюся в состоянии равновесия термо-э. д. с. называют объемной тер.мо-э. д. с.  [c.73]

Подвижность носителей в полупроводниках с атомной решеткой. В полупроводниках с атомной решеткой рассеяние носителей заряда происходит на тепловых колебаниях решетки и на ионизированных примесях. Эти два механизма рассеяния приводят к появлению двух участков в температурной зависимости подвижности. При рассеянии носителей на тепловых колебаниях решетки средняя длина свободного пробега одинакова для носителей заряда с различными скоростями и обратно []роиорциональна абсолютной температуре полупроводника. Это следует из того, что рассеяние носителей заряда должно быть прямо пропорционально поперечному сечению того объема, в котором шлеблется атом, а оно пропорционально квадрату амплитуды колебания атома, определяющему энергию решетки, которая с температурой растет, как известно, по линейному закону. Поэтому, так кап 3 формуле (8-11) /ср 1/7 , а УТ, то  [c.241]

На практике эта зависимость не всегда соблюдается. Имеются случаи и более резкой зависимости подвижности от температуры, вплоть до и 1/Т . При низких температурах тепловое рассеяние, согласно (8-12), становится незначительным и в материалах с атомными решетками преобладающим оказывается резерфордовский механизм рассеяния носителей на ионизированных примесях. Дли лтого механизма характерно уменьшение рассеяния движущихся г аряженных частиц при увеличении скорости, так как они находятся меньшее время под влиянием поля рассеивающих заряженных примесных атомов. Поэтому длина свободного пробега носителя заряда растет с увеличением температуры в соответствии с выражением  [c.241]



Смотреть страницы где упоминается термин Подвижность свободных носителей заряда и ее зависимость от температуры : [c.81]    [c.21]    [c.242]   
Смотреть главы в:

Физические основы конструирования и технологии РЭА и ЭВА  -> Подвижность свободных носителей заряда и ее зависимость от температуры



ПОИСК



Газ-носитель

Зависимость от температуры

Заряд

Заряды свободные

Подвижность носителей заряда

Свободные носители заряда

Температура заряда



© 2025 Mash-xxl.info Реклама на сайте