Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Когерентный свет, формирование изображения

Эта аберрация вызывается тем, что материал линзы имеет различные коэ( ициенты преломления для разных оптических частот. В когерентных системах формирования изображения, включая голографию, такая аберрация несущественна, поскольку в этом случае для освещения используется монохроматический свет. Одним из исключений являются голографические оптические элементы (см, 10.8) и голографические дифракционные решетки.  [c.66]

Вышеприведенные замечания о формировании изображений при когерентном освещении (или, сокращенно, о когерентном формировании изображений) объекта в виде точечной маски в опыте Юнга равным образом применимы к 1) более сложным маскам, таким, например, как 35-мм слайды в диапроекторах, 2) непрозрачным объектам, освещаемым обычными тепловыми источниками света, и 3) само-светящимся объектам, которые люминесцируют (например, телевизионное изображение) или нагреты (например, инфракрасная фотография горячих тел). В каждой из этих категорий существуют те же мгновенные фазовые соотношения, какие мы описывали раньше.  [c.19]


В первой модели делается акцент на общий характер дифракции (рассеяние) света от объекта, когда условия по крайней мере частично когерентны, и на способ сведения света для формирования изображения. Аспекты анализа Фурье, относящиеся к первой части этого вопроса, уже знакомы нам по гл. 3 и 4. В разд. 5.3 мы рассматриваем их снова на этот раз с учетом второго этапа формирования изображения. Эта модель первоначально была сформулирована (в основном качественно) в 1873 г. Э. Аббе [1], который занимался проблемами наблюдений периодических объектов под микроскопом. Как можно сказать, пользуясь современной терминологией, он выяснил, что при способах освещения, используемых обычно в оптической микроскопии, формирование изображения вовсе не является полностью некогерентным процессом, как иногда полагают в действительности в некоторых современных системах он может быть почти когерентным.  [c.85]

Вторая модель формирования изображения, которую мы рассматриваем в разд. 5.2, применима к условиям как когерентного, так и некогерентного освещения. И здесь Рэлей внес важный вклад [51], на этот раз под влиянием более ранних работ Эри и Гельмгольца. Модель представляет изображение как комбинацию картин Эри (или более сложных картин, если присутствуют аберрации), которые оптическая система должна создавать отдельно для света из каждой точки объекта. Если освещение некогерентно, то интенсивности картин Эри, определяемые всеми точками объекта, являются просто аддитивными. Если же оно когерентно, то присутствует интерференция и тогда изображение математически представляет собой комбинацию картин Эри с комплексными амплитудами, Рэлей рассматривал оба предельных случая. При пред-  [c.85]

Последовательность а д рис, 5.6 иллюстрирует некоторые из основных положений, которые упоминались в связи с ролью дифракции на первой стадии формирования изображения в когерентном свете, В каждом примере представлены объектная маска и создаваемое ею оптическое преобразование.  [c.97]

Физическую природу наблюдаемой зернистости нетрудно понять как при распространении света в свободном пространстве (рис. 7.10,6), так и при распространении его через систему формирования изображения (рис. 7.10, в), если рассмотреть случай, когда рабочие поверхности рассеивателей имеют очень большую шероховатость в масштабе оптических длин волн. При распространении в свободном пространстве результирующая оптическая волна в любой точке, находящейся на не слишком большом расстоянии от рассеивающей поверхности, состоит из многих когерентных компонент или элементарных волн, каждая из которых испускается со своего микроскопического элемента поверхности. Обратившись к рис. 7.10,6, заметим, что расстояния, пройденные этими различными волнами, могут отличаться на много длин волн. Интерференция сдвинутых по фазе, но когерентных элементарных волн приводит к зернистому распределению интенсивности (или спекл-картине, как ее называют). Если оптическое устройство представляет собой систему формирования изображения (рис. 7.10,в), то при объяснении наблю-  [c.466]


Схемы голографической записи и восстановления изображений могут быть различными, однако общую схему можно представить следующим образом. Излучение от источника когерентного света делится светоделительной системой на два потока, один из которых попадает в систему формирования опорного пучка, другой в систему формирования пучка, освещающего объект. Получение голограммы заключается в регистрации интерференционной картины светочувствительным приемником, например фотографической пластинкой. При освещении зарегистрированной картины опорным пучком формируется восстановленное изображение, наблю-  [c.25]

Во многих случаях использования когерентного света бывает необходимо рассмотреть сложение двух пучков света. Это имеет место главным образом в голографии, а также в интерферометрии, формировании изображений, оптической обработке информации и т. д. Пусть i1)i(a ) и 11)2(л ) — функции комплексных амплитуд двух рассматриваемых полей тогда результирующая (суммарная) функция комплексной амплитуды дается выражениями  [c.42]

ФОРМИРОВАНИЕ ИЗОБРАЖЕНИЯ В КОГЕРЕНТНОМ СВЕТЕ  [c.242]

Формирование изображения в когерентном свете  [c.243]

ФОРМИРОВАНИЕ ИЗОБРАЖЕНИЯ В ЧАСТИЧНО-КОГЕРЕНТНОМ СВЕТЕ  [c.250]

Формирование изображения в частично-когерентном свете  [c.253]

Формирование изображения в когерентном свете..........242  [c.372]

Содержание книги достаточно полно отражено оглавлением. Несколько больше внимания, чем обычно, уделено статистическим свойствам света и спектральному представлению. Дифракция изложена в рамках интеграла Кирхгофа. На материале геометрической оптики и интерференции в тонких пленках показана эффективность матричных методов. Дифракционная теория формирования изображений, пространственная фильтрация изображений, голография и другие аналогичные вопросы представлены единообразно в рамках Фурье-оптики. Анализ частичной когерентности и частичной поляризации проводится в рамках первой корреляционной функции.  [c.9]

В данной главе мы и намерены логически раскрыть соотношение, которое существует между объектом и его изображением, полностью принимая в расчет когерентные свойства света, который отражается или испускается объектом. Кроме того, мы хотим выяснить, при каких условиях система, формирующая изображение, может рассматриваться как некогерентная система (линейная по интенсивности), при каких она ведет себя как когерентная система (линейная по комплексной амплитуде), а при каких возможна некоторая промежуточная форма поведения. Далее, мы хотим объяснить принцип действия интерферо-метрических систем формирования изображения, которые позволяют определять когерентные характеристики падающего на них излучения и на основании этой информации восстанавливать изображение. (Такие системы, формирующие изображение, широко применяются в радиоастрономии.) И наконец, мы познакомим читателя с понятием спекл-структуры в когерентных сисгемах, формирующих изображение и рассмотрим  [c.271]

Прекрасный обзор по вопросу формирования изображения в частично когерентном свете был опубликован Томсоном [7.1]. Этот вопрос рассматривался также в различных книгах по теории когерентности [7.2—7.4]. Рекомендуем также читателю познакомиться с пионерными работами Гопкинса [7.5, 7.6].  [c.272]

Излагая теорию формирования изображения в частично когерентном свете, мы хотим показать, каким образом можно вычислить распределение интенсивности в плоскости изображения в любой заданной экспериментальной ситуации и при этом выяснить, какую роль играют в таком процессе по отдельности освещение, объект и оптика, формирующая изображение. Можно надеяться, что это позволит более правильно интерпретировать результаты эксперимента. Ниже мы излагаем ряд разных методов анализа, которые дают возможность предсказывать распределение интенсивности на изображении в тех или иных условиях эксперимента.  [c.287]

При изложении теории частичной когерентности в ее связи с проблемами формирования изображения мы примем феноменологический подход. Как с классической, так и с квантовой точки зрения представляется вполне естественным, что возмущения в двух точках должны быть коррелированы в пространстве и во времени. Луч света с полосой частот излучения Av, испускаемый источником площадью сг, должен давать эффекты когерентности в области протяженностью с/А вдоль луча и в любых двух точках плоскости, перпендикулярной лучу, которые находятся в пределах дифракционного диска, соответствующего источнику 0 как отверстию дифракционной диафрагмы. В этом когерентном объеме реального пространства, соответствующем элементу фазового пространства, должно обнаруживаться фотонное вырождение. Хорошо известно, что свойства симметрии волновой функции бозонов при-  [c.181]


Мы должны различать свойства опорной. волны и волны, освещающей объект, с одной стороны, и свойства восстанавливающей волны — с другой. Термин некогерентная голограмма обычно сохраняется за голограммами, записанными при использовании некогерентного света. При записи некогерентной голограммы интерференционные полосы образуются благодаря интерференции света от какой-либо точки изображения с самим собой. Для этого формируют два изображения объекта с помощью делительного устройства. Свет от соответствующих точек изображения является когерентным и может интерферировать. Свет, который не интерферирует, образует фоновое освещение голограммы [81. Другой способ получения интерференционных полос, когда источник света имеет низкую когерентность, заключается в формировании на голограмме изображения решетки и помещении объекта в один из порядков этой решетки [91.  [c.148]

Мацумура 44] сообщил, что, используя случайные сдвиги фазы, можно также существенно уменьшить макрозернистость, обусловленную царапинами и пылью на линзах, и, кроме того, ослабить интерференционные полосы, вызванные светом, отраженным от оптических поверхностей. Этот спекл-шум представляет собой одну из важнейших проблем, связанных с шумом в когерентных системах формирования изображения. Можно получить восстановленное изображение с высокой эффективностью и высоким отношением сигнал/шум, задавая в пространстве случайное распределение фазы в проходящем свете. Это связано с тем, что свет, дифрагировавший от объекта, освещенного через фазосдвигающую пластинку, распределяется равномерно по регистрирующей среде. Это позволяет максимально использовать динамический диапазон регистрирующей среды.  [c.367]

ОПТИКА [ асферическая содержит элементы, поверхности которых, не имеют сферической формы просветленная обладает уменьшенными коэффициентами отражения света у отдельных ее элементов путем нанесения на них специальных покрытий) как оптическая система (волновая изучает явления, в которых проявляется волновая природа света волоконная рассматривает передачу света и изображений по световодам и пучкам гибких оптических волокон геометрическая изучает законы распространения света в прозрачных средах на основе представлений о световых лучах интегральная изучает методы создания и объединения оптических и оптоэлектронных элементов, предназначенных для управления световыми потоками квантовая изучает явления, в которых при взаимодействии света и вещества существенны квантовые свойства света и атомов вещества когерентная изучает методы создания узконаправленных когерентных пучков света и управления ими нелинейная изучает распространение мощных световых пучков в оптически нелинейных средах (твердые тела, жидкости, газы) и их взаимодействие с веществом силовая изучает воздействие на твердые тела интенсивного светового излучения, в результате которого может нарушаться механическая цельность этих тел статистическая изучает статистические свойства световых полей и особенности их взаимодействия с веществом тонких слоев изучает прохождение света через прозрачные слои вещества, толщина которых соизмерима с длиной световой волны физическая изучает природу света и световых явлений) как раздел оптики электронная занимается вопросами формирования, фокусировки и отклонения пучков электронов и получения с их помощью изображений под воздействием электрических и магнитных полей корпускулярная изучает законы движения заряженных частиц в электрическом и магнитном полях нейтронная изучае взаимодейс вие медленных нейтронов со средой) как раздел физики]  [c.255]

Рассмотрим рис. 1.5, на котором изображена объектная маска с двумя очень малыми апертурными отверстиями В и С, однородно освещенными квазимонохроматическим светом от удаленного источника. Плоские волны поступают по нормали к маске, а сферические волновые фронты расходятся из В и С. Схема такая же, как и в опыте Юнга, за тем исключением, что теперь дополнительно у нас есть линза, которая создает изображение точечных отверстий в плоскости, расположенной, как показано на рисунке. Непосредственный интерес представляет, однако, задняя фокальная плоскость линзы. Рассмотрим любую точку Р, лежащую в направлении под углом 0 к оси линзы в ней складываются вместе и интерферируют только составляющие, распространяющиеся от В и С в направлении 0 (сравните с опьггом Юнга, где интерференция в точке Р на рис. 1.1 происходит между светом, распространяющимся от апертур в разных направлениях). Мы увидим, что конкретная дифракционная картина (определяемая ниже как фраун-гоферовская) в задней фокальной плоскости отображающей линзы является особенно важным промежуточным шагом в формировании изображения, выполняемом линзой. Это позволяет оценить конечную стадию формирования изображения и предоставляет единственную и особую по своей важности возможность для преобразования изображения. Указанное обстоятельство подробно обсуждается в гл. 5, но здесь мы исследуем некоторые свойства картины, сформированной в описанном выше примере. Прежде, однако, отметим, что для экспериментального получения таких дифракционных картин Фраунгофера необходимо обеспечить существование статистических фазовых соотношений, обусловленных когерентным освещением (см. замечания в предьщущем разделе о различиях между когерентным и некогерентным формированием изображения). До гл. 5, где вновь обсуждается эта разница, мы будем (если не указано особо) предполагать, что условия когерентности выполняются.  [c.20]

Для того чтобы с помощью синтезированных фильтров можно было обрабатывать изображения большой площади, они должны записываться с достаточно большой пространственной частотой. Для увеличения пространственной частоты фильтра в [192] был предложен метод голографического копирования. На рис. 7.15 приведена схема копирования фильтра для увеличения его пространственной несущей. Изображение, восстановленное с помощью линзы с синтезированного на ЦВМ фильтра — голограммы Г, освещенной плоской волной когерентного света, используется в качестве нового изображения для получения нового фильтра по классической схеме Ван дер Люгта [214]. При этом для формирования нового фильтра используется только изображение, восстановленное в +1 порядке дифракции, остальные дифракционныр порядки экранируются посредством диафрагмы Д. В качестве опорного источника можно использовать либо плоскую монохроматическую волну S, как показано на рис. 7.15, либо точечный источник со сферическим волновым фронтом, расположенный в одно11 плоскости с изображением, восстановленным с синтезированно11 голограммы-фильтра. При этом расстояние между источником и + 1 дифракционным порядком должно быть не меньше размера входного транспаранта в установке фильтрации. Это условие обеспечивает получение нового фильтра с большей пространственной частотой. Для случая плоской опорной волны, падающей в плоскость фильтра Ф, пространственная частота на фильтре зависит от угла падения Т опорной волны на фильтр. Чем больше угол, тем выше пространственная частота. Этот метод повышения пространственной несущей нашел применение для синтеза фильтров в различных задачах фильтрации [63, 112].  [c.154]


Последние десять лет ознаменовались интенсивным развитием голографии и той части оптики, на которой базируется голография — когерентной оптики. Это развитие явилось следствием значительного события в физике— создания в результате работ Н. Г. Басова, А. М. Прохорова и Г. Таунса мощных когерентных ис-гочников света — лазеров. Последователи изобретателл голографии Д. Габора чл.-корр. АН СССР Ю. И. Де-нисюк, американский ученый Е. Лейт и др. — внесли немало новых идей, способствующих дальнейшему развитию этого нового направления. Работы фундаментального характера здесь тесно переплетались с предложениями по практическому применению голографии в самых различных областях науки и техники. Возникла необходимость в пересмотре многих привычных представлений о формировании изображений объекта, а также о передаче и записи световой информации от объекта. Одновременное развитие вычислительной техники и установление высоких требований к ней привели к переплетению голографии и когерентной оптики с техникой обработки информации, В связи с этим еще больше повысился интерес к этим направлениям и возникла необходимость в подробном анализе прйблем передачи, обработки и записи информации методами голографии и когерентной оптики. В предлагаемой читателю книге сделана попытка частично удовлетворить интерес к поставленным проблемам. Многочисленные исследования, выполненные в этой области, хотя и не охватывают полностью все вопросы, возникающие при рассмотрении перечисленных проблем, все же являются достаточными для систематического изложения последних.  [c.5]

Образование изображения в когерентном свете можно рассматривать как результат интерференции волн, дифрагировавших на объекте и сведенных с помощью линзовой системы в определенной плоскости — плоскости изображения. Тогда для формирования изображения синусоидальной одномерной решетки с помощью какой-либо линзовой системы необходимо иметь достаточно большую апертуру линзовой системы, чтобы дифрагировавшие пучки -Ь1 и —1-го порядков, попадая в апертуру, отклонялись соответствующим образом, и, интерферируя, давали изображение решетки. Зная угол дифракции, нетрудно показать, что размер апертуры оптической системы D = 2kvz, где z — расстояние от решетки до главной плоскости линзы. Таким образом, описание объекта с помощью пространственной частоты позволяет просто оценить, например, требуемую апертуру объектива.  [c.19]

Большое значение для голографии имеет процесс формирования изображения. Этот вопрос наряду с описанием особенностей линзового формирования изображений в когерентном и некогерентном свете и рассмотрением проблемы разрешения и аберраций довольно подробно обсуждает Ю. Упатниекс (гл. 6).  [c.7]

Голографические методы мультиплицирования имеют очевидные преимущества в скорости по сравнению с шаговой фотокамерой-Однако не ясно, имеет ли этот метод абсолютное преимущество. Для каждого из N изображений величина сигнала и отношение сигнал/шум изменяются как МN или l/A/ в зависимости от способа записи голограмм. Необходимость достаточно хорошего отношения сигнал/шум ограничивает число мультиплицированных изображений. Имеются сообщения, что наилучшие голограммы позволяют получить до N 1000 хороших изображений. Из-за внеосевых аберраций голограммы (таких, как астигматизм) качество выходных изображений меняется от изображения к изображению. Налицо остаются все трудности, связанные с формированием изображения в когерентном свете. В некоторых случаях этими проблемами можно пренебречь, в других нельзя. С другой стороны, голографии свойственна универсальность, что позволяет делать некоторые вещи исключительно хорошо. Например, операция юстировки каждого изображения, необходимая при последовательной процедуре мультиплицирования, в голографическом методе не нужна, поскольку для этого достаточно настроить одно-единственное изображение. Когда одно изображение отъюстировано, все выходные изображения оказываются настроенными.  [c.667]

На этапе формирования изображения используются две световые волны одной облучают объект, другая служит для образования однородного когерентного фона. При взаимодействии этих волн возникает хорошо известная в оптике интерференционная картина, которая несет в себе полную запись пространственной структуры световой волны (по амплитуде и по фазе). Запись интерференционной картины, полученную после этапа формирования изображения, называют голограммой. Записанная на фотоматериал голограмма несет информацию об амплитуде и фазе волны, отраженной от предмета, но не имеет никакого сходства с предметом и при визуальном рассмотрении кажется бессмысленной комбинацией полос и дифракционных колец. На этапе восстановления изображения используется когерентный пучок света, которым освещается голограмма для получения изображения первоначального предмета. При этом возникают два типа изображения действительное и м и-мое. Действительное изображение появляется на стороне, противоположной источнику излучения. Мнимое изображение появляется на той стороне голограммы, где размещается источник излучения. Физическое объяснение З тОму может быть дано такое. Очевидно, что голограмма пропустит свет только в тех местах, где располагаются максимумы интерференционной картины, т. е. там, где фазы волн от объекта и источника совпадали. В этих условиях голограмма как бы выбирает на поверхности фронта волны источника такие места н пропускает их сквозь себя. Приблизительно на половине площади голограммы будет воспроизведена объективная волна. То, что голограмма не воспроизводит поле объекта на месте темных полос интерференции, приводит к некоторой неоднозначности воспроизведения фазы, в результате которой появляется ложное изображение объекта. В схеме Д. Г абора лучи, образующие истинное и ложное йзобра-  [c.105]

Гл. 7 посвящена теории формирования изображения в частично когерентном свете. Излагаются некоторые аналитические подходы к задаче. В этой главе также вводится и используется для понимания характера оптических систем, формирующих изображение, щироко применяемое в радиоастрономии понятие ин-терферометрического формирования изображения. Рассматривается также вопрос о восстановлении фазы.  [c.16]

Оптическая модель основана на теории формирования изображения в частично когерентном свете. Основной алгоритм относится только к одномерным периодическим объектам и круговой апертуре. С помощью этого алгоритма могут быть эффективно смоделированы периодически чередующиеся линии и интервалы, а также отдельные линии и интервалы. Этот алгоритм позволяет находить распределение интенсивности изображения путем усреднения суммы произведений фурье-гармоник оптического пропускания объекта. Коэффициенты корреляции различных фурье-гармоник вычисляются из функции зрачка для данной степени когерентности а и расфокусировки В программе SAMPLE для расчета интегралов типа свертки используется комбинация аналитических и численных методов интегрирования [12.7]. Пользователь задает структуру изображения (щи-рину линий и интервалов), длину волны, числовую апертуру и степень когерентности, погрешность фокусировки и размер окна изображения. Характерное время расчета составляет несколько секунд для ЭВМ VAX 11/780 при использовании операционной системы UNIX с компилятором /77.  [c.324]

Формирование и преобразование с помощью таких модуляторов двумерных массивов информации, представляемой в цифровой (бинарной) или аналогово форме, лежит в основе создания оптических запоминающих и периферийных устройств, когерентных оптических процессоров и других ваиснейших узлов информационных и вычислительных систем. функционалы ая роль пространственных модуляторов света в них весьма многогранна отображение информации (дисплеи, в том числе проекционные), ввод-вывод, формирование и преобразование массивов оптических сигналов, реализация логических операций, регистрация пространственного распределения оптических сигналов, визуализация изображений, кодирование и опознавание, преобразование по амплитуде и фазе, частоте, по когерентности несущей, усиление яркости изобраи ений, персстрапвлемая фильтрация, обработка изображений и др.  [c.9]



Смотреть страницы где упоминается термин Когерентный свет, формирование изображения : [c.731]    [c.73]    [c.467]    [c.118]    [c.112]    [c.9]    [c.103]    [c.5]    [c.17]    [c.416]   
Оптическая голография Том1,2 (1982) -- [ c.62 , c.661 ]



ПОИСК



Изображение когерентное

Когерентная (-ое)

Когерентность

Когерентность света

Когерентный свет

Формирование

Формирование изображений,



© 2025 Mash-xxl.info Реклама на сайте