Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двойное лучепреломление в одноосном кристалле

Общие замечания. В своем Трактате о свете , написанном в 1690 г., Гюйгенс впервые дал объяснение двойному лучепреломлению в одноосных кристаллах. При этом Гюйгенс исходил из предположения, что обыкновенному лучу соответствует возникновение в кристалле лучевой поверхности в виде сферы, а необыкновенному — в виде эллипсоида вращения. Далее, опираясь на уже известный нам принцип, Гюйгенс нашел пути прохождения обыкновенного и необыкновенного лучей в одноосном кристалле.  [c.261]


Докажите наличие двойного лучепреломления в одноосном кристалле с позиций электромагнитной теории света.  [c.456]

Двойное лучепреломление в одноосных кристаллах  [c.82]

Столь же просто можно пояснить возникновение двойного лучепреломления в кристаллах. Для наглядности исследуем одноосный кристалл, хотя тот же результат легко получить и в общем случае.  [c.130]

Если же два когерентных луча линейно поляризовать во взаимно перпендикулярных плоскостях, то они при встрече не создадут интерференционной картины. Именно этот случай наблюдается при двойном лучепреломлении в кристаллах. Лучи, образованные расщеплением падающего луча в кристаллах, являются, конечно, когерентными, однако эти лучи как в одноосных, так и в двуосных кристаллах поляризованы во взаимно перпендикулярных плоскостях. Это не единственный способ получения когерентных и взаимно перпендикулярно поляризованных колебаний. Достаточно поставить  [c.49]

Кристаллы, имеющие лишь одно направление, вдоль которого не происходит двойное лучепреломление, называют одноосными (исландский шпат, кварц и др.). Существуют кристаллы, имеющие два таких направления. Они называются двуосными. В дальнейшем основное внимание будет уделено одноосным кристаллам, широко используемым в оптических экспериментах.  [c.176]

Мы видим, что в данном случае электромагнитная теория дает исчерпывающее описание отражения и преломления света на границе анизотропной среды. При ином расположении оптической оси относительно границы принципиальные затруднения не возникают, но вычисления оказываются громоздкими. В таких случаях возможно получить частичное решение задачи — определить направления преломленных волн в одноосном кристалле — с помощью изящного геометрического построения, впервые примененного Гюйгенсом для объяснения двойного лучепреломления в исландском шпате.  [c.188]

Очень эффективный метод согласования фаз при генерации второй гармоники основан на использовании двойного лучепреломления в анизотропных (часто одноосных) кристаллах. Как известно, в одноосном кристалле могут распространяться в любом направлении, кроме направления оптической оси, две монохроматические волны с одной и той же частотой и с различными фазовыми скоростями — обыкновенная и необыкновенная волны. Направления поляризации обеих волн взаимно перпендикулярны. Фазовая скорость ы>ао и показатель преломления необыкновенного луча зависят от направления и лишь в направлении оптической оси совпадают с соответствующими значениями для обыкновенного луча ы> и Кристаллы, для которых  [c.172]


Вышеизложенное позволяет нам еще раз отметить, что каждая падающая на одноосный кристалл волна в общем случае вызывает две преломленные волны. Каждой преломленной волне соответствует свое направление луча и своя лучевая скорость — скорость распространения энергии в кристалле. Обыкновенный луч распространяется по направлению нормали к волне со скоростью, не зависящей от направления. Необыкновенный луч образует с нормалью некоторый угол и имеет скорость, зависящую от направления. Это явление мы и называем двойным лучепреломлением.  [c.261]

Создание ахроматических фазовых пластинок — задача достаточно трудная. Однако в отдельных конкретных случаях ее удается решить. Например, хроматизм одной пластинки можно компенсировать с помощью другой пластинки, сделанной из иного материала. Неплохо это удается с помощью пленочных фазовых пластинок. Дело в том, что при растяжении различных органических полимерных пленок в них возникает двойное лучепреломление разного знака (одни аналогичны положительным одноосным кристаллам, другие — отрицательным). Хорошие результаты дает, например, комбинация растянутых пленок ацетата и нитрата целлюлозы. Пленки при этом взаимно ориентируются так, чтобы направления наибольших показателей преломления были скрещены. Тогда нормальный хроматизм ацетата целлюлозы компенсируется аномальным хроматизмом нитрата  [c.52]

Обеспечить условие синхронизма на большом пути распространения волн оказалось возможным в кристаллах, обладающих двойным лучепреломлением. Скорость распространения электромагнитных волн в таких кристаллах зависит от поляризации луча. При этом в направлении оптической оси обыкновенный и необыкновенный лучи распространяются с одной и той же скоростью наибольшая же разность скоростей имеет место в направлении, перпендикулярном оптической оси. На рис. 47 приведены сечения волновых поверхностей одноосного кристалла. Оптиче-  [c.76]

Кристаллы являются оптически неоднородными веществами скорость распространения в них лучей света, поляризованных в разных плоскостях, зависит от направления луча. Линия, вдоль которой скорость распростра.че-ния лучей не зависит от ориентации плоскости поляризации, называется оптической осью. Любая прямая, параллельная оптической оси, тоже будет оптической осью. В зависимости от числа направлений, обладающих указанным свойством, кристаллы бывают одноосными и двухосными. При попадании света на поверхность одноосного кристалла возникает явление двойного лучепреломления.  [c.223]

Отлетим, что в этом случае результирующий одноосный кристалл является положительным, так что материал дает то же самое двойное лучепреломление, как и вещество, обладающее положительным оптическим коэффициентом напряжения под действием растяжения.  [c.242]

Если изотропное тело находится в силовом поле (деформируется), то в нем возникает выделенное направление и тело приобретает свойства кристалла (в том числе и свойство двойного лучепреломления). При одностороннем растяжении или сжатии изотропное тело становится подобным одноосному кристаллу с оптической осью, параллельной направлению растяжения или сжатия. При более сложных деформациях, например, при двустороннем растяжении, тело становится оптически двухосным.  [c.100]

Кристаллы. Введем некоторые определения. Плоскостью падения называется плоскость, содержащая луч и нормаль к поверхности кристалла. Главным сечением кристалла называется плоскость, содержащая оптическую ось кристалла и луч. Оптическая ось кристалла — прямая, проведенная через любую точку кристалла в направлении, в котором не происходит двойного лучепреломления. Рассмотрим прохождение электромагнитной волны через одноосный кристалл. Определим прямоугольную систему координат. Направим оптическую ось кристалла вдоль оси л , как показано на рис. 25.2. Выберем произвольное направление распространения луча в кристалле Ог. Пусть фазовая скорость распространения электромагнитной волны будет V. Уравнение световой волны, распространяющейся в произвольном направлении в среде, имеет вид  [c.196]


Структуры с периодическим набором квантовых ям с точки зрения оптических свойств подобны одноосному кристаллу. Помимо анизотропного оптического поглощения в них можно также наблюдать двойное лучепреломление.  [c.49]

Сначала мы ограничимся обсуждением наиболее часто встречающегося случая двойного лучепреломления в одноосных кристаллах. В этом случае оптическая индикатриса является эллипсоидом вращения. Для волны, поляризация которой перпендикулярна оптической оси, показатель преломления не зависит от направления распространения. Такая волна называется обыкновенной. Для волны, поляризованной в плоскости оптической оси, показатель преломления изменяется по закону эллипса от значения По (показатель преломления для обыкновенной волиы), когда волновая нормаль параллельна оптической оси, до значения Пе (показатель преломления для необыкновенной волны), когда волновая нормаль перпендикулярна оптической оси. Такая волна- называется необыкновенной. Аналогично два световых пучка с соответствующими поляризациями, распространяющиеся в кристалле, называются о-луч и е-луч. Если волновая нормаль направлена под углом 0 к оптической оси, величина показателя преломления для необыкновенной волны дается выражением  [c.30]

Пусть параллельный пучок монохроматического света (рис. 20.1), поляризованный при помощи поляризатора Пь падает на пластинку, вырезанную из кристаллического кварца перпендикулярно к оптической оси 00. Известно, что свет, распространяющийся вдоль оптической оси в одноосных кристаллах, не претерпевает двойного лучепреломления, следовательно, второй поляризатор Пг, скрещенный с Пь не должен пропускать света. Однако в данном опыте свет при скрещенных поляризаторах все же проходит. Поворачивая Пг на некоторый угол, можно вновь добиться полного затемнения поля. Это свидетельствует о том, что свет, прошедший через кристалл кварца, остался линейно поляризованным, но плоскость поляризации повернулась на некоторый угол, измеряемый поворотом Пг. Изменяя длину волны света, можно обнаружить, что угол поверота плоскости поляризации различен для разных длин волн, т. е. имеет место дисперсия оптического вращения.  [c.71]

Электрооптический К. э.— квадратичный электро-оптич. эффект, возникновение двойного лучепреломления в оптически изотропных веществах (газах, жидкостях, кристаллах с центром симметрии, стёклах) под действием внеш. однородного электрич. поля. Оптически изотропная среда, помещённая в электрич. поле, становится анизотропной, приобретает свойства одноосного кристалла (см. Кристаллооптика), оптич. ось к-рого нанравле]1а вдоль поля.  [c.348]

Поляризуемость молекул в различных направлениях, вообще говоря, различна. В малых внешних полях молекулы ориентированы беспорядочно и поэтому нет анизотропии в поляризационных свойствах среды. В сильных полях молекулы ориентируются определенным образом относительно поля, в результате чего поляризованностъ и показатель преломления становятся анизотропными, а среда в оптическом отношении превращается в одноосный кристалл. Возникает двойное лучепреломление, причем показатель преломления п необыкновенного луча зависит от направления распространения. Возникающая при этом нелинейность — ориентационной.  [c.341]

КЕРРА ЭФФЕКТ (электрооптический) состоит в появлении двойного лучепреломления в твердых телах, жидкостях и газах, находящихся в сильном электрич. поле. Диэлектрик внутри плоского конденсатора становится оптически анизотропным, приобретая свойства, аналогичные одноосному кристаллу, ось которого направлена параллельно силовым линиям. Если через такой диэлектрик пропустить линейно поляризован. пучок света с плоскостью поля- " /la/ipiXiHue  [c.60]

Одноосные и двуосные кристаллы. Проведенные опыты показывают, что в кристалле исландского шпата имеется одно-единстЕенное направление, вдоль к0Т0р010 двойного лучепреломления не происходит. Такие кристаллы называются одио-осными, а направление, вдоль кото[)ого не происходит двойного лучеиреломле-  [c.226]

Если один из лучей (обыкновенный или необыкновенный) направить на двулучепреломляющий одноосный кристалл, то каждый из них удвоится (рис. 9.8). Следовательно, двойное лучепреломление возникает при падении на к 5исталл как естественного, так и линей-1Ю-поляризованного света. Разница заключается в том, что если в первом случае интенсивности обоих лучей равны, то во втором случае  [c.231]

Если какое-либо прозрачное тело подвергнуть одностороннему сжатию (или растяжению), то в результате такого воздействия образуется своеобразный квазикристалл , оптическая ось которого проходит в направлении действия деформирующей силы. Оптические свойства деформированного таким образом тела соответствуют свойствам одноосного кристалла. При пропускании света в направлении, перпендикулярном к образовавшейся оптической оси, возникает двойное лучепреломление. Это яв-  [c.63]

Описываемый метод применим в основном лишь к одноосным кристаллам (для стекол он не очень удобен, так как в этом случае окрун ение магнитных ионов не вполне определено). В других кристаллах двойное лучепреломление сильно мешает измерениям вращения плоскости поляризации, и рассматриваемый метод можно применять только в случае слабого двойного лучепреломления. При этом линейно поляризованный свет трансформируется в эллиптически поляризованный пучок. Когда эллиптичность не слишком  [c.398]

Описание метода определения величины вращения в нанравлении, перпендикулярном оптической оси для одноосных кристаллов с малым двойным лучепреломлением дано Беккерелем [56—58[, использовавшим этот метод для исследования тпзоиита. В табл. 6 приводятся данные для отношения V a  [c.399]


Двойное лучепреломление наблюдается в стекле только при наличии в нем внутренних напряжений (временных или остаточных), вызываемых приложением внешних механических воздействий (растягивающих или сжимающих стекло), а также неравномерным или быстрым охлаждением стекла (закалка) или наличием в нем химически неоднородных областей — различных по составу (и особенно коэффициенту термического расширения) стеклообразных включений — свилей, шлифов, ликваций. В этих случаях стекло приобретает свойства анизотропного материала и, уподобляясь оптически одноосному кристаллу, становится двупреломляющим.  [c.458]

Более совершенные методы управления интенсивностью лазерного луча основаны на явлении двойного лучепреломления, наблюдаемого в кристаллах. Среди различных кристаллов особую группу занимают одноосные, к которым относятся кристаллы квадратной и гексагональной систем в частности широко используемый в оптике кристалл исландского шпата (СаСОд), имеющий гексагональную систему и кристаллизирующийся в виде ромбоэдров.  [c.70]

КРИСТАЛЛЫ валентные (атомные) содержат в узлах кристаллической решетки нейтральные атомы (С, Ge, Те и др.), между которыми осуществляется гомеополярная связь, обусловленная квантово-механическим взаимодействием глобулярные представляют собой частный случай молекулярных кристаллов и имеют вид клубка полимеров жидкие обладают свойствами как жидкости (текучестью), так и твердого кристалла (анизотропией свойств) внутри малых объемов идеальные не имеют дефектов структуры иопные обладают гетерополярной связью между правильно чередующимися в узлах кристаллической решетки положительными и отрицательными ионами квантовые характеризуются большой амплитудой нулевых колебаний атомов, сравнимой с межатомным расстоянием металлические образуются благодаря специфической химической связи, возникающей между ионами кристаллической решетки и электронным газом (Си, А1 и др.) молекулярные (Лг, СН , парафин и др.) формируются силами Ван-дер-Вальса, главным образом дисперсионными нитевидные вытянуты в одном направлении во много раз больше, чем в остальных оптические [активные поворачивают плоскость поляризации света вокруг падающего линейно поляризованного луча анизотропные обладают двойным лучепреломлением, состоящим в том, что луч света, падающий на поверхность кристалла, раздваивается в нем на два преломленных луча двуосные имеют две оптические оси, вдоль которых свет не испытывает двойного лучепреломления одноосные (имеющие одну оптическую ось отрицательные, в которых скорость обыкновенного светового луча меньше, чем скорость распространения необыкновенного луча положительные, в которых скорость распространения обьпсновенного светового луча больше, чем скорость распространения необыкновенного луча))] КРИСТАЛЛИЗАЦИЯ— образование кристаллов из паров, растворов, расплавов веществ, находящихся в твердом состоянии в процессе электролиза и при химических реакциях  [c.244]

ОДНООСНЫЕ КРИСТАЛЛЫ — кристаллы, в к-рых происходит двойное лучепреломление при всех паправ-лениях падающего на них луча света, кроме одного, называемого оптической осью кристал-л а. См. Кристаллооптика.  [c.400]

МИ электрооптическими кристаллами типа u l, ZnS или НМТ 65, 66] или одноосными кристаллами типа KDP и ADP в продольной конфигурации (свет распространяется вдоль оптической оси с). Тот факт, что в настоящее время нет кристаллов достаточно высокого оптического качества, можно рассматривать как временный [70]. Модуляторы чаще изготавливают из более доступных материалов KDP и ADP в поперечной конфигурации [67, 68]. Но поскольку при таком методе измерения через кристалл должны проходить две (перпендикулярно) поляризованные компоненты, даже если модулятор предназначен для фазовой модуляции линейно поляризованного излучения, мы сталкиваемся с проблемой естественного двойного лучепреломления и нестабильных оптических искал ений, которые ограничивают применимость поперечной конфигурации с кристаллами KDP и ADP для модуляции по интенсивности [69]. В схеме, изображенной на фиг. 9,4, за модулятором стоит фотоумножитель, на выходе которого включен чувствительный вольтметр постоянного тока. Поскольку измеряются только средние интенсивности, фотоумножитель может иметь большую постоянную времени.  [c.489]

Двойное лучепреломление наблюдается в стеклах только при наличии у них внутренних напряжений, которые могут быть вызваны внешними механическими воздействиями (растягивающими или сжимающими стекло), а также неравномерным и быстрым охлаждением в процессе отжига и закалки, или являются следствием химической неоднородности стекла, когда оно содержит разлотные по составу (и коэффициенту термического расширения) стеклообразные включения — свили, шлиры. В этих случаях стекло приобретает свойства анизотропного материала и, уподобляясь оптически одноосному кристаллу, становится двупреломляющим.  [c.177]

Теперь легко понять происхождение двойного лучепреломления. Допустим, что плоская волна падает на плоскопараллельную пластинку из одноосного кристалла. При преломлении на первой поверхности пластинки волна внутри кристалла разделится на обыкновенную и необыкновенную. Эти волны поляризованы во взаимно перпендикулярных плоскостях и распространяются внутри пластинки в разных направлениях и с разными скоростями. Волновые нормали обеих волн лежат в плоскости падения. Обыкновенный луч, поскольку его направление совпадает с направлением- волновой нормали, также лежит в плоскости падения. Но необыкновенный луч, вообще говоря, выходит из этой плоскости. (В случае двуосных кристаллов деление на обыкновенную и необыкновенную волны теряет смысл — внутри кристал та обе войны необыкновенные . При преломлении волновые ьормали обеих волн, конечно, остаются в плоскости падения, однакооба луча, вообш,е говоря, выходят из нее.)  [c.460]


Смотреть страницы где упоминается термин Двойное лучепреломление в одноосном кристалле : [c.115]    [c.482]    [c.115]    [c.356]    [c.338]    [c.575]    [c.498]    [c.507]    [c.64]    [c.694]    [c.515]    [c.61]    [c.115]    [c.47]    [c.462]   
Оптический метод исследования напряжений (1936) -- [ c.38 ]



ПОИСК



Двойни

Двойное лучепреломление

Двойное лучепреломление в одноосных кристаллах. . — Положительные и отрицательные кристаллы. Волновые поверхности Френеля

Дву лучепреломление

Дву лучепреломление в одноосных кристаллах

Зависимость лучевой скорости от направления. Эллипсоид лучевых скоростей. Анализ хода лучей с помощью эллипсоида лучевых скоростей Оптическая ось. Двуосные и одноосные кристаллы. Эллипсоид волновых нормалей. Лучевая поверхность Двойное лучепреломление

Кристалл одноосный

Кристаллы двойного лучепреломлени

П двойной



© 2025 Mash-xxl.info Реклама на сайте