Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волны поляризованные

Можно показать, что гипотеза Френеля формально объясняет явление вращения плоскости поляризации. Линейно-поляризованную волну ( ), как известно, можно разложить на две волны, поляризованные по правому ( р) по левому ( ) кругам (рис. 12.7). 296  [c.296]

Перевод круговой поляризации в линейную достигается введением при помощи какого-либо устройства дополните.пьной разности фаз о п 2 двух волн, поляризованных во взаимно перпендикулярных направлениях. Обычно для этой цели используется пластинка в четверть длины волны (см. гл. 1П). Призма Френеля фактически также служит устройством, обеспечивающим введение дополнительной разности фаз двух волн, поляризованных во взаимно перпендикулярных направлениях. Такой способ обладает тем преимуществом, что достигаемый сдвиг по фазе мало зависит от длины волны падающего света.  [c.99]


Итак, считаем, что на входе в вещество (г = 0) имеются две волны, поляризованные по кругу, а именно  [c.163]

Итак, выяснена возможность наблюдения суммарной картины с видимостью, отличной от нуля, при освещении экрана через какую-либо оптическую систему излучением, состоящим из двух волн, поляризованных во взаимно перпендикулярных направлениях (в частности, источником неполяризованного света).  [c.205]

К интерференции волн, поляризованных во взаимно перпендикулярных направлениях, после введения кварцевой пластинки, повернувшей плоскость поляризации одной из волн на угол п/2  [c.205]

Историческое значение опытов такого типа весьма велико. Они показали, что при наложении двух когерентных волн, поляризованных во взаимно перпендикулярных направлениях, результирующая интенсивность равна сумме интенсивностей налагающихся волн. Но при сложении колебаний это имеет место, только если колебания строго перпендикулярны. Действительно, только тогда ,2 — амплитуда результирующего, а а ш Ь — ампли-  [c.389]

Рассмотрим результат сложения двух когерентных световых волн, поляризованных в двух взаимно перпендикулярных направлениях, имеющих разную амплитуду и обладающих некоторой разностью фаз. Мы легко можем осуществить подобный случай на  [c.390]

Мы уже ознакомились с важнейшими фактами, характеризующими распространение света в кристаллах. Основное отличие кристаллической среды от сред, подобных стеклу или воде, состоит в явлении двойного лучепреломления, обусловленном, как мы видели, различием скорости распространения света в кристалле для двух световых волн, поляризованных во взаимно перпендикулярных плоскостях. С этой особенностью связано и различие в скорости распространения света по разным направлениям в кристалле, т. е. оптическая анизотропия кристаллической среды. Обычно, если среда анизотропна по отношению к одному какому-либо ее свойству, то она анизотропна и по другим свойствам. Однако можно указать случаи, когда среда может рассматриваться как изотропная в одном классе явлений и оказывается анизотропной в другом. Так, кристалл каменной соли обнаруживает изотропию оптических свойств, но механические свойства его вдоль ребра и диагонали различны.  [c.495]

Эллипсоид Френеля и служит, как показал Френель, для определения с помощью следующего построения лучевых скоростей и и и" по любому направлению в кристалле. Проведем сечение эллипсоида, перпендикулярное к направлению 5, вдоль которого распространяется свет (рис. 26.5). Сечение это, вообще говоря, будет иметь форму эллипса, главные оси которого и 8 5 взаимно перпендикулярны. Направления этих осей дают направление колебания вектора Е двух волн, поляризованных взаимно перпендикулярно и распространяющихся вдоль 05, а длины полуосей (05 = о 05" = и") — лучевые скорости этих двух волн, отнесенные к скорости света в вакууме с.  [c.502]


Однако, поскольку явление происходит в поляризованном свете, у него будет своя специфика. Нетрудно предсказать, что интерференционная картина должна обладать аксиальной симметрией и в фокальной плоскости объектива она должна иметь вид концентрических светлых и темных окружностей. Первые будут соответствовать выходу из пластинки волн, поляризованных так, что они создают результирующее колебание (см. рис. 26.22, б) с поляризацией, совпадающей с главным направлением анализатора. Вторые — вол-  [c.518]

Для получения аналитического выражения для угла поворота плоскости поляризации в оптически активной среде запишем углы поворота электрического вектора как функции времени / и пути 2, проходимого светом в среде для волн, поляризованных по правому и левому кругам  [c.74]

Поляризация рассеянного свята. Пусть естественный свет падает на рассеивающую частицу в направлении Оу (рис. 23.6). Естественный свет можно представить как сумму двух волн поляризованных в двух взаимно перпендикулярных направлениях, лежащих в плоскости 20х. Если проводить наблюдения рассеянного света в направлении Ох, то в силу поперечности световых волн в этом направлении пойдут волны, обусловленные лишь той составляющей электрического вектора, которая перпендикулярна к Ох. Таким образом, в свете, рассеянном под прямым углом к падающему, должны наблюдаться только те колебания электрического вектора, которые направлены вдоль Ог, т. е. свет должен быть полностью поляризован.  [c.116]

Таким образом, в формуле (36.8) содержатся три члена. Первый член представляет собой волну поляризован-ности, колеблющуюся на частоте падающей волны. Второй член не зависит от времени. С ним связано так называемое оптическое детектирование, т. е. возникновение в нелинейной среде постоянной поляризованности при прохождении через нее мощной световой волны. Это явление аналогично выпрямлению синусоидального электрического тока. Схема опыта, в котором обнаруживается оптическое детектирование, показана на рис. 36.1. Лазерное излучение / большой интенсивности падает на кристалл кварца 3, помещенный между обкладками конденсатора 2. Световой поток подается отдельными импульсами длительностью т. Вследствие детектирования световой импульс лазера возбуждает импульс электрического тока в цепи конденсатора с той же длительностью т, который и наблюдается на экране осциллографа 4.  [c.301]

Третий член формулы (36.8) гармонически изменяется со временем и характеризует волну поляризованности  [c.301]

При удовлетворении условий (36.10) обе волны— волны поляризованности с частотами со и 2ы — обладают одной и той же фазой в любой точке пространства, поэтому (36.10) называют условием волнового синхронизма. Равенства (36.10) соответствуют, очевидно, максимальной интенсивности второй гармоники, генерируемой в данной нелинейной среде при заданной мощности исходного излучения.  [c.302]

Если приемная антенна принимает волны, поляризованные по кругу влево, а также Ту = Т, то интенсивность сигнала в приемной антенне  [c.230]

За счет электродинамического эффекта ЭМА-преобразователи возбуждают волны самых разных типов. При проектировании ЭМА-преобразователя для возбуждения волн определенного типа следует иметь в виду, что возникающие при электродинамическом взаимодействии механические напряжения пропорциональны векторному произведению индуцированного в изделии тока на индуктивность магнитного поля Т I х В. Отсюда следует, что направление колебаний в волне перпендикулярно направлениям как электрического тока, так и магнитного поля. Например, по схеме, приведенной на рис. 1.40, за счет электродинамического эффекта возбуждаются поперечные волны, поляризованные вдоль радиуса катушки 2.  [c.70]

Применяемые полярископы позволяют получать линей-но поляризованный свет (плоский полярископ) или введением пластинок четверть волны — поляризованный по кругу (круговой полярископ). в сдвоенном полярископе поляризатор и анализатор расположены по одну сторону от модели (см. табл. 13 и 14).  [c.582]

Френель подтвердил свою гипотезу при помощи опыта, проведен ного со сложной призмой, специально изготовленной им для обнаружения различия в скорости распространения волн, поляризованных вправо и влево по кругу.  [c.298]


Рассмотрим несколько подробнее условия получения круговой поляризации, которая, как известно, является частным случаем эллиптической поляризации. Для возникновения циркулярно поляризованного света разность фаз 6 должна б дть равной (2k + 1)п/2. Но, кроме того, должны быть одинаковыми амплитуды двух взаимно перпендикулярных колебаний. Это достигается при определенной ориентации вектора Е в падающей волне относительно оптической оси кристалла. РГетрудно сообразить, что если угол между Е и плоскостью главного сечения равен 45°, то амплитуды обыкновенной и необыкновенной волн одинаковы и при 8 = (2/е + 1)п/2 из кристалла выйдет волна, поляризованная по кругу. Именно так работает пластинка в четверть длины волны (рис.3.3), которую можно использовать как для превращения линейно поляризованной волны в волну, поляризованную  [c.116]

Все предыдущее исследование проводилось для некоторого выбранного направления колебаний излучающих атомов в источнике света, т.е. рассматривалось излучение вполне определенной поляризации. Не представляет труда распространить полученные выводы на случай поляризованного света, но здесь необходимо более тщательно исследовать вопрос об интерференции поляризованных лучей, в частности наложение интерференционных картин, создаваемых волнами, поляризованными во взаимно перпендикулярных направлениях. Здесь снова окажется полезным идеализированное устройство из двух параллельных пластин, отражающих свет и использованных при описании прост-ранс гвенной когерентности в 5.3.  [c.203]

Пусть имеются две электромагнитные волны, поляризованные во взаимно перпендикулярных направлениях, не интерферирующие одна с другой. С помощью оптических устройств можно разложить кансдую волну на две и получить две системы интерференционных полос, свести их вместе в какой-то области пространства и зарегистрировать отличную от нуля видимость суммарной картины. Рассмотрим эту возможность подробнее, исследуя наложение интерференционных полос, создаваемых источником неполяризованного света.  [c.203]

Возможность получения световых волн, поляризованных в любой плоскости, позволяет поставить вопрос о взаимодействии волн, колебания которых взаимно перпендикулярны. Основные опыты в этом направлении были выполнены Aparo и Френелем (1816 г.). Они показали, что если в обычном интерференционном опыте на пути двух интерферирующих пучков поставить поляризационные устройства, обеспечивающие их взаимно перпендикулярную поляризацию, то интерференция наблюдаться не будет. Но если повернуть одно из этих поляризационных устройств на 90°,  [c.388]

Во всех рассуждениях предшествующего параграфа предполагалось, что свет, падающий на кристаллическую пластинку, линейно-поляризован. Если бы падающий свет был естественным (т. е. его кожно было бы представить как совокупность многочисленных волн, поляризованных по всем возможным направлениям), то выходящий из пластинки свет представлял бы совокупность эллиптически-поля-ризованных волн без какой-либо преимущественной ориентации  [c.393]

Отсутствие интерференционной картины в опытах, подобных опытам Aparo и Френеля, не означает, что два взаимно перпендикулярных световых колебания в результате взаимодействия не могут приводить к изменениям свойств светового луча, которые доступны наблюдению. Выше (см. 2.2 и 17.2) мы уже отмечали, что в результате сложения двух волн, поляризованных в двух ортогональных направлениях, обладающих разными амплитудами и разностью фаз, получается эллиптическая поляризация. Рассмотрим это явление более подробно.  [c.50]

Линейно поляризованный свет можно представить как совокупность двух волн, поляризованных по правому и левому кругам, с одинаковыми периодами и амплитудами. Пусть в месте входа в слой оптически активного вещества совокупность волн, поляризованных по правому и левому кругам, эквивалентна линейно поляризованному свету с колебаниями по направлению АА (рис. 20.2, а), т. е. вращающиеся электрические векторы правой и левой волн симметричны по отношению к плоскости АА. Рассмотрим, какова будет взаимная ориентация этих векторов в любой точке среды. Предположим, что Ппр>Плеп, тогда ДО какой-либо точки среды в определенный момент времени волна, поляризованная по левому кругу, дойдет с некоторым отставанием по фазе по отношению к волне, поляризованной по правому кругу. В рассматриваемой точке электрический вектор волны, поляризованной по правому кругу, будет повернут впра-  [c.73]

Заключение о наличии дефекта в объекте контроля выносится по пороговой величине изменения интенсивности принимаемого результирующего сигнала. При диэлектрической или иной анизотропии величина сигнала в приемной антенне зависит от угла между плоскостью поляризации излученнои электромагнитной волны и направлением главных осей тензора диэлектрической проницаемости в данной точке образца. После прохождения анизотропного слоя волной, поляризованной по кругу, мы получаем в общем случае волну, поляризованную по эллипсу, которую представляем в виде суммы двух волн, поляризованных по  [c.229]

В некоторых случаях, когда требуется быстрая модуляция интенсивности излучения, используются ячейки Поккельса. Основным элементом ячейки является одноосный кристалл (КДР, АДР и др.). Луч света направляется по оптической оси кристалла при этом оба луча — обыкновенный и необыкновенный — распространяются в кристалле с одной и той же скоростью. При приложении к кристаллу электрического поля вдоль оптической оси кристалл становится двуосным с главными осями ох и оу, составляющими угол 45° с кристаллографическими осями ох и оу (рис. 45). Скорость распространения в нем двух волн, поляризованных во взаимно перпендикулярных плоскостях, проходящих через ох и ог/, оказывается различной. Когда на кристалл падает линейно-поляризованный свет, плоскость поляризации которого совпадает с ох, то в кристалле распространяются две взаимно перпендикулярно поляризованные компоненты с различными скоростями v-y и Uj. Пройдя некоторый путь, они приобретают разность фаз, зависящую от приложенного к кристаллу напряжения, вследствие чего на выходе из кристалла свет становится эллипти-чески-поляризованным, причем эксцентриситет эллипса поляризации зависит от разности фаз, т. е. от приложенного напряжения. Пропуская затем модулированный таким образом свет через поляризационную призму, получают лазерный луч, модулированный по амплитуде, т. е. по интенсивности.  [c.73]


Плоские модели. Монохроматический свет в поляриско-п е. Волна поляризованного монохроматического света длиной Я, создаваемого источником 1 (фиг. 16), идущая от поляризатора 2, проходит через плоскую нагруженную модель 3 и анализатор 4. Изображение модели на экране 5 сомровождается по всем точкам внутри кпнтура модели картиной интерферен-  [c.578]

Блок-схема радиополярископа практически не отличается от блок-схемы радиоинтроскопа [6]. Общий вид его показан на рис. 1. Излучающая и приемная антенны радиополярископа могут вращаться вокруг их общей оси (в дальнейшем ось 2), причем специальные лимбы обеспечивают отсчет угла поворота каждой из антенн с высокой точностью. В нем могут устанавливаться как антенны плоскополяризованных волн, так и волн, поляризованных по кругу.  [c.59]

Это приведет к тому, что при выходе из тела образуется волна, поляризованная по эллипсу, и поле радиозрения при скрещенных антеннах просветится. Радиосигнал пройдет в приемник радиополярископа.  [c.60]

При прохождении света через кристаллич, пластинку на выходе образуются два когерентных световых колебания с нек-рой разностью фаз б=2пДп Д (Дп — разность показателей преломления, d — толщина пластинки, А, — длина волны), поляризованные в двух взаимно перпендикулярных направлениях (наз. гл. направлениями кристаллич, иластинки). Волна на выходе оказывается эллиптически поляризованной, причём эллипс поляризации повёрнут на нек-рый угол относительно гл. направлений.  [c.512]


Смотреть страницы где упоминается термин Волны поляризованные : [c.296]    [c.99]    [c.118]    [c.130]    [c.156]    [c.389]    [c.390]    [c.74]    [c.76]    [c.109]    [c.230]    [c.72]    [c.327]    [c.66]    [c.241]    [c.490]    [c.278]    [c.596]   
Теплоэнергетика и теплотехника Общие вопросы (1987) -- [ c.223 ]

Оптика (1986) -- [ c.22 ]



ПОИСК



Алфавитный указа поляризованные световые волны

Бегущие волны линейно-поляризованные

Бегущие волны поляризованные по кругу

Влияние слоистой диэлектрической среды иа потери энергии электрически-поляризованной плоской волны в нендеально проводящей гребенке

Волна бекущая поляризованная

Волны линейно поляризованные

Волнь частично поляризованные

Зависимость поляризации люминесценции от длины волны возбуждающего света и концентрации волны поляризованного света

Интерференция волн поляризованных

Линейная демодуляция инеино-поляризованные волны

Образование поляризованных поперечных волн

Отражение акустических волн, поляризованных в плоскости падения

Отражение вертикально-поляризованной волны

Отражение вертикально-поляризованной упругой волны

Поляризованное

Поляризованные по кругу волны

Поляризованные по кругу волны колебания

Стоячие волны линейно-поляризованные

Стоячие волны поляризованные по кругу

Суперпозиция линейно поляризованных волн

Уравнение переноса для частично поляризованной электро-маг нитной волны

Флуктуации интенсивности световою потока. Опыты Вавилова. Флуктуации интенсивности во взаимно когерентных волнах. Флуктуации интенсивности в поляризованных лучах. Опыт Брауна и Твисса Поляризация фотонов

Эллиптически-поляризованные волны и параметры Стокса



© 2025 Mash-xxl.info Реклама на сайте