Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ван-дер-Ваальса связь

Вакансии 85, 87 Ван-дер-Ваальса связь 65 Вектор Бюргерса 98  [c.382]

Уравнение Ван-дер-Ваальса с большой точностью описывает свойства разреженных газов при достаточно высоких температурах. Но в плотном газе и при температурах, близких к температуре конденсации, это уравнение в количественном отношении неудовлетворительно. Поэтому неоднократно предлагались другие, более точные уравнения состояния реальных газов. Широкое использование уравнения Ван-дер-Ваальса связано, во-первых, с его относительно простой математической структурой а во-вторых, с тем, что оно качественно правильно передает свойства плотных газов и содержит указания на переход в жидкое состояние и критические явления.  [c.127]


Явление сорбции [36, 61] возникает в результате действия сил притяжения между молекулами газа и атомами на поверхности твердого тела. Различают два вида адсорбции физическую и химическую. В первом случае силами сцепления являются только относительно слабые межмолекулярные силы типа сил Ван-дер-Ваальса, во втором происходит обмен электронами и формируются прочные химические связи между адсорбируемым веществом и твердым телом. Часто бывает так, что физическая адсорбция переходит в химическую, если температура возрастает достаточно для того чтобы обеспечить необходимую энергию активации процессу химической адсорбции.  [c.89]

Молекулярная связь (или связь Ван-дер-Ваальса) возникает вследствие смещения электрических зарядов в молекулах и атомах и появления слабого электрического притяжения. Этот тип межатомной связи характерен для инертных газов с завершенными электронными оболочками.  [c.6]

Кроме двух наиболее типичных химических связей — ковалентной и ионной различают межмолекулярные связи, возникающие вследствие действия универсальных сил Ван-дер-Ваальса, и металлические связи.  [c.10]

Межмолекулярные связи действуют между любыми атомами и молекулами, но они очень малы (порядка Ю Дж/моль). Поэтому молекулярные кристаллы, обусловленные этими силами (твердые инертные газы, молекулы кислорода, азота и др.), отличаются весьма низкой температурой плавления (Не— 1,8 К, Аг — 40 К). Образование прочных структур обусловлено главным образом сильными типично химическими связями, например ковалентной, а силы Ван-дер-Ваальса служат лишь небольшой добавкой . Силами Ван-дер-Ваальса обусловлены обычно адгезионные связи при склеивании, смачивании твердых тел жидкостями и т. п.  [c.10]

Как и в случае газа Ван-дер-Ваальса, энтропию твердого тела можно выразить через полную среднюю энергию атома и = E/N, где —внутренняя энергия тела. Величина и складывается из рассмотренной средней энергии колебаний и энергии связи  [c.63]

Выражение (4.18) для равновесного давления твердого тела имеет тот же вид, что и формула (4.17) для газа Ван-дер-Ваальса, поскольку (1м /(1ч < 0 энергия связи уменьшается при увеличении  [c.84]

С основными представлениями этой теории мы познакомились в 3.3, а в гл.4 установили, как связаны с температурой и объемом внутренняя энергия, энтропия и давление газа Ван-дер-Ваальса. С исследования этого последнего уравнения  [c.137]


Итак, силы Ван-дер-Ваальса являются основными силами притяжения в случае кристаллов химически неактивных атомов и между молекулами с насыщенными связями в молекулярных кристаллах. Строго говоря, силы Ван-дер-Ваальса не являются чисто парными силами, как это предполагается при вычислении энергии сцепления с использованием потенциала Леннарда— Джонса. Ясно, что при взаимодействии двух атомов присутствие рядом третьего вызывает перераспределение положительных и отрица-  [c.69]

Сверхпроводимость 262 Связь Ван-дер-Ваальса 65, 75  [c.383]

Двухвалентные ионные кристаллы должны иметь большую энергию связи, чем одновалентные, поскольку теперь А=(2е) = 4е2. Притяжение, обусловленное силами Ван-дер-Ваальса, дает относительно малый вклад в энергию связи ионных кристаллов, что составляет 1—2% этой энергии. Силы Ван-дер-Ваальса являются главенствующими и обеспечивают взаимодействие (притяжение) между атомами в кристаллах инертных газов, а также во многих кристаллах органических веществ. Кристаллы, связи в которых обусловлены силами Ван-дер-Ваальса, обладают структурой с максимально возможным числом ближайших соседей.  [c.25]

Связь между атомами в кристалле почти полностью обеспечивается силами электростатического притяжения между отрицательно заряженными электронами и положительно заряженными ядрами. Роль сил магнитного происхождения очень незначительна, а гравитационными силами вообще можно пренебречь. Задав пространственное распределение электронов и ядер в кристаллах и распределение их скоростей (это в принципе можно выполнить методами квантовой механики), можно рассчитать энергию связи в кристалле. Такие специальные понятия, как энергия обменного взаимодействия (обменная энергия), силы Ван-дер-Ваальса, резонансная энергия стабилизации, ковалентные силы, используются только для обозначения сильно различающихся ситуаций.  [c.25]

При этом значения Va и связаны следующим соотношением, вытекающим из уравнения Ван-дер-Ваальса и условия = ре-  [c.202]

Трудность анализа свойств перегретого пара и пересыщенного пара связана с отсутствием достаточно точного уравнения состояния для метастабильной области вещества. Уравнение Ван-дер-Ваальса, которое качественно описывает метастабильные состояния, для количественных расчетов не всегда пригодно.  [c.235]

Связь между плотностью, температурой и давлением устанавливается уравнением состояния, которое для реальных жидкостей и газов выводится в кинетической теории. Однако ввиду сложности общего уравнения состояния и затруднительности определения входящих в него констант, для качественного анализа свойств этих сред пользуются приближенными теоретическими или эмпирическими уравнениями. Получило широкое применение, например, уравнение Ван-дер-Ваальса  [c.14]

Водородная связь возникает в результате сильного обобществления электрона атома водорода одним атомом и притяжения ядра атома водорода (протона) другим электроотрицательным атомом. Металлическая связь осуществляется обобществленными электронами, образующими в металле электронный газ. Молекулярная связь осуществляется силами Ван-дер-Ваальса.  [c.333]

Молекулярная связь. Если электроны сильно связаны с атомом, то осуществление какой-либо из перечисленных выше связей оказывается затруднительным. Такая ситуация возможна, например, для инертных газов. Тем не менее при подходящих условиях они могут быть переведены в жидкое и твердое состояние. Ответственные за это силы называют силами Ван-дер-Ваальса. Это очень слабые силы притяжения между флуктуирующими дипольными моментами атомов и молекул, возникающими в результате движения электронов в атомах и молекулах.  [c.334]

Для мягких (т, е. сжимаемых) атомов т = , п = 3 и тах=1,41 или Агтах=0,41 Го- Когда отталкивание связано с перекрытием электронных оболочек, что характерно для металлов и ионных кристаллов, атомы менее сжимаемы, величина п возрастает и достигает 11. Для п=11 и т = 1 Агтах=0,2го. В случае, если и=11, т=6 (силы Ван-дер-Ваальса), подстановка /п и п в (6) дает Агтах= =0,115/ о. Таким образом, в зависимости от типа связи кристаллической решетки напряжение о, получаемое из (4)  [c.18]


Молекулярная связь существует между отдельными молекулами за счет электростатического притяжения имеющихся в них зарядов противоположных знаков (силы Ван-дер-Ваальса). Эти связи удерживают вместе молекулы во многих органических соединениях типа полиэтилена и т. п. Ввиду слабости молекулярных связей эти вещества легко разрушаются при тепловом движении молекул и поэтому имеют низкие температуры плавления и кипения. Особым видом молекулярной связи является водородная связь, осуществляемая через ион водорода (протон), расположенный между двумя ионами (например. О. Р, СГ) соседних молекул она присутствует, например, в воде,  [c.7]

Уравнение Ван-дер-Ваальса является наиболее простым уравнением состояния реального газа. Существует ли связь этого уравнения с наиболее общим уравнением состояния — уравнением в вириальной форме Такая связь существует если для разреженного газа учитывать только второй вириальный коэффициент, то уравнения (4.2) и (4.3) эквивалентны. Для уравнения состояния в вириальной форме (4.2) имеем  [c.104]

Межмолекулярная связь наблюдается у благородных газов, переведенных в твердое состояние при низких температурах (Ne, Аг, Кг, Хе). Низкие температуры плавления и кипения этих газов указывают на то, что силы притяжения между атомами у них малы и обусловлены поляризационными силами или силами Ван-дер-Ваальса.  [c.14]

Индивидуальные постоянные а, Ь, уравнения Ван дер-Ваальса, вообще говоря, нетрудно определить, если для данного вещества экспериментально измерены давление, температура и удельный объем хотя бы для трех состояний. Однако часто эти постоянные связываются с критическими параметрами вещества. Установить такую связь на первый взгляд нетрудно.  [c.24]

Если вещества подчиняются закону соответственных состояний, то их поведение описывается единым приведенным уравнением состояния, т. е. для них существует одинаковая зависимость вида <р=/(я, т). Такое уравнение не содержит каких-либо постоянных, зависящих от природы вещества. Например, уравнение Ван-дер-Ваальса (1.16) можно, используя связь его постоянных с критическими параметрами, привести к безразмерному виду  [c.33]

При высоких давлениях или температурах, близких к критическим, газы не подчиняются уравнению Менделеева — Клапейрона внутренняя энергия и энтальпия, а следовательно, и теплоемкость зависят не только от температуры, но и от давления. Для реальных газов связь между основными параметрами состояния устанавливается уравнением Ван дер Ваальса, если можно пренебречь энергией ассоциации молекул. В тех случаях, когда энергией ассоциации молекул пренебречь нельзя, связь между р, v и Т можно найти из уравнения (1.19). Однако это уравнение пока не нашло практического применения из-за сложности вычисления вириальных коэффициентов. Поэтому связь между р, v ч Т находят либо из соответствующих таблиц для данного газа, приведенных в теплотехнических справочниках, либо из эмпирических уравнений.  [c.30]

Четвертый вид связи — молекулярная связь (связь Ван-дер-Ваальса). Такая связь существует в некоторых веществах между молекулами с ковалентными внутримолекулярными связями. Меж-молекулярное притяжение в этом случае обусловливается согласованным движением валентных электронов в соседних молекулах (рис. В-4), в любой момент времени электроны максимально удалены друг от друга и максимально приближены к положительным зарядам. При этом силы притяжения валентных электронов положительно заряженными остовами соседних молекул оказываются сильнее сил  [c.10]

Для обоих кристаллов эти коэффициенты практически одинаковы, ио различаются перестановкой мест. Различие коэффици- еитов а, и ах обусловлено анизотропией связей направления прочных и слабых связей в этих кристаллах взаимно перпендикулярны. Сходство соответству-ующих коэффициентов в обоих веществах обусловлено одина- ковой природой прочных (ковалентные силы) и слабых (силы Ван-дер-Ваальса) связей. Переустановка коэффициентов вызвана тем, что главная ось в кри- сталле графита совпадает с направлением слабой связи, а в жристалле теллура — с направ- лением сильной связи. Отрицательные значения коэффициентов расширения вдоль сильных связей объясняются анизотропи->ей колебаний частиц. Амплитуды продольных колебаний вдоль слоев и цепочек меньше амплитуд поперечных колебаний. Тепловые волны изгиба приводят к сокращению продольных размеров слоев и цепочек. В кубическом кристалле алмаза, взятом для сравнения, тепловое расширение изотропно и мало, а = 0,6-10 град , что объясняется кубической симметрией и прочностью связей. Другие свойства алмаза и графита — двух модификаций углерода — также существенно различны. Алмаз — изолятор, прозрачен, Тверд графит—полупроводник, непрозрачен, легко распадает->ся на чешуйки при легком нажиме.  [c.86]

Линейные полимеры образуют сагиую большую группу полимерных материалов Тан пак связь между молекулярными цепями обусловлена силами Ван-дер-Ваальса, которые невелики, прч повышении температуры полимеры этого вида легко размягчаются и превращаются в жидкость. Линейные полимеры являются основой термопластических материалов (термопластов). Типичными представителями линейных полимеров являются полиэтилен, полипропилен, политетрафторэтилен и др. Вследствие цепной структуры полимеры можно легко вытянуть в высокопрочные волокна.  [c.18]

Ковалентная связь имеет то же происхождение, что и связь в гамополярных молекулах (Нг, СЬ, Ь,.- ), она обусловлена обменным электронным взаимодействием между атомами. В молекулярных кристаллах (Нг, СЬ, Ь,---) ковалентная связь локализована между ядрами в молекуле, молекулы удерживаются вместе слабыми силами Ван-дер-Ваальса. Однако в случае алмаза или графита несколько валентных электронов являются общими для атома и ряда его соседей, и поэтому невозможно выделить какую-либо группу атомов, которую можно рассматривать как химически насыщенную (рис. 2.7). С этой точки зрения кристалл алмаза представляет собой огромную молекулу.  [c.75]


Рассмотрим в связи с полученными условиями устойчивости однородной системы газ Ван-дер-Ваальса. Изотерма этого газа при температуре ниже критической изображена на рис. 2 . Часть АВ соответствует газу, часть FG — жидкости. В этих состояниях (др1дУ)т<0, что указывает на их устойчивость. Состояния, лежащие на участке СЕ, неустойчивы, так как для них [dpldV)j>Q. Точка С является граничной для устойчивости отдельно взятой газовой фазы относительно ее непрерывных изменений (не связанных с образованием новой фазы). С точки В, как правило, газ начинает конденсироваться, а двухфазное состояние определяется прямолинейным участком BF. Участки ВС и EF соответствуют метастабильным состояниям пара и жидкости соответственно (см. задачу 6.6).  [c.131]

При наличии в кристаллах связей разного типа могут образовываться устойчивые обособленные группировки атомов, которые и рассматриваются обычно в качестве основных структурных единиц кристалла. Такие кристаллы называют гетеродесмическими. Обычно связи внутри обособленных группировок носят ковалентный характер, между группировками действуют ван-дер-ваальсо-вы связи. Типичные примеры — многие органические соединения, а также структуры с интерметаллическими комплексами в неорганических кристаллах и т. д.  [c.161]

В XX в. наиболее актуальной задачей становится разработка теории течения и истечения паров и газов в связи с широким развитием паровых турбин. Исследуются термодинамические свойства паров, жидкостей, твердых тел. Появляются десятки уравнений состояния вещества, изучаются фазовые равновесия и фазовые превращения, ведется исследование электрических и магнитных процессов лучистой энергии, химических реакций, термодинамики реальных тел. Указанные области исследований термодинамики неразрывно связаны с именами Ван-дер-Ваальса, Дюгема, Г. Кирхгофа, М. Планка, Л. Больцмана, В. Гиббса, Н. С. Курнакова, М. П. Вукаловича, И. И. Новикова, Н. И. Белоконя, В. А. Кириллина и других ученых.  [c.4]

Из (6-5) следует, что третий и старпше вириальные коэффициенты не зависят от температуры, что не соответствует действительности. Отмеченные неДостат1ки указывают на непригодность уравнения Ван-дер-Ваальса для количественного описания термодинамических свойств вещества, что подтверждается многочисленными расчетами. В связи с этим были предложены различные модификации уравнения Ван-дер-Ваальса ( 6-3), с помощью которых были сделаны попытки устранить в какой-то мере указанные выше недостатки. Однако эти эмпирические уравнения состояния (Вертло, Дитеричи и др.) ие нашли широкого применения, так как они описывают очень ограниченную область параметров состояния.  [c.104]

МОЛЕКУЛЯРНАЯ СВЯЗЬ обусловлена силами Ван-дер-Ваальса, возникающими в результате эффекта поляризации, вызываемого полем электронов, движущихся вокруг ядра данного атома, на движение электронов вокруг ядра соседнего атома. За счет флуктуации (случайного движения электронов) у одного из сближающихся нейтральных атомов центры тяжести отрицательного и положительного зарядов разделяются и появляется дипольный момент на одном атоме, который В свою очередь вызывает такой же дипольный момент на другом. В результате энергия системы (агрегата) снижается. Силы притяжения электростатической природы компенсируются силами отталкивания, которые препят-  [c.9]

Ван-дер-ваальсовы силы слабые (меньше кулонов-ских), короткодействующие, центральные. Типичными представителями веществ являются кристаллы благородных газов и вследствие того, что силы связи малы, эти кристаллы существуют при очень низких температурах. Силы Ван-дер-Ваальса типичны для некоторых анизотропных кристаллов, образующихся из элементов IV—VII групп (см. рис. 3, б) по правилу 8—ЛА. В них между атомными слоями (рядами, молекулами) действуют силы Ван-дер-Ваальса, а между атомами внутри слоев (рядов, молекул) ковалентные связи.  [c.10]

Надежность проектирования различных технических объектов в большой степени связана с точностью расчетов процессов изменения состояния рабочих веществ, которые используются в этих объектах. Качественное проектирование дает существенный экономический эффект за счет снижения затрат топливно-энергетических ресурсов и материалов, а также затрат на создание опытно-промышленных образцов нового оборудования. Различные газообразные рабочие вещества широко используются в народном хозяйстве. В связи с этим создание достаточно точного уравнения состояния реальных газов представляет собой задачу первостепенной важности. Уравнение Ван-дер-Ваальса было опубликовано в 1873 г., теория уравнения обобщала опыт исследований в этой области за предшествующий многолетний период. В последующий период по мере развития техники предпринимались многочисленные попытки усо-веригенствования уравнения Ван-дер-Ваальса, а также построения новых уравнений состояния . В настоящее время наибольшее внимание уделяется созданию так называемых полуэмпирических уравнений состояния. Основой в этом случае является уравнение в вириальной форме (4.2), но вириальные коэффициенты рассматриваются как эмпирические и вычисляются по измеренным термодинамическим свойствам веществ, а не по зависимости Un(x).  [c.105]

Различают физическую адсорбцию и хемосорбцию. При физической адсорбции молекулы газа удерживаются на поверхности физическими силами, например силами ван-дер-ваальса, а при хемосорбции молекулы вступают в химическую связь с атомами металла. Физическая адсорбция протекает без энергии акт 1вации и, как сказано, почти мгновенно, непосредственно после ударения молекул о поверхность. Поскольку хемосорбция связана с энергией активации, то она обычно протекает медленнее физической адсорбции. Теплота физической адсорбции меньше теплоты хемосорбции.  [c.46]

Ранее считалось, что соединение покрытия с основным металлом при большинстве способов напыления происходит за счет механических связей [61], что предварительная подготовка поверхности, в частности пескоструйная обработка, приводяш,ая к повышению шероховатости, способствует усилению механических связей за счет заклинивания деформированных напыленных частиц в рельефе основного металла. В настоящее время полагают, что наряду с лгехани-ческим взаимодействием прочность соединения определяется установленными при напылении химическими связами п силами Ван-дер-Ваальса. Последние, однако, играют весьма малую роль в повышении прочности соединения. Что касается химического взаимодействия, то его значение может быть определяющим. При детонационном напылении высокую прочность соединения покрытия А120д с ниобием авторы [15] объясняют химическим взаимодействием частиц напыляемого материала и основного металла. Высокая прочность соединения наблюдается при нанесении тугоплавких покрытий на металлы с более низкой температурой плавления. При этом происходит перемешивание двух различных по химическому составу и свой-, ствам материалов, и достигается высокая прочность соединения покрытия с основным металлом. Предварительная пескоструйная обработка необходима не только для создания на поверхности металла нужного рельефа, но и для увеличения контактной площади и дополнительной активации цоверхности [15]. Выявление причин, определяющих уровень прочности соединения, будет, вероятно, основываться на систематических и глубоких исследованиях границы покрытие — основной металл с. привлечением современных методов изучения структуры.  [c.56]


Механическая связь реализуется в отсутствие какого бы то ни было химического механизма — даже сил Ван-дер-Ваальса — и сводится к механическому сцеплению. Однако отсутствие химической связи существенно снижает прочность композита при поперечном нагружении поэтому в технологии изготовления компози тов механическую связь не считают полезной. Связь путем смачивания и растворения имеет место в композитах, где упрочнитель, не являющийся окислом, смачивается или растворяется матрицей, но не образует с ней соединений. Окисная связь может возникать при смачивании, а также при образовании промежуточных соединений на поверхности раздела. Как правило, металлы, окислы которых обладают малой свободной энергией образования, слабо связываются с окисью алюминия. Однако следы кислорода иль активных элементов усиливают эту связь путем образования промежуточных зон в обоих случаях связь относится к окисному типу. Кроме того, согласно общей классификации, к окисному типу относится связь между окисными пленками матрицы и волокна.  [c.35]

По характеру сил связи твердые кристаллические тела можно условно разделить на следующие четыре группы ионные кристаллы (Na l, LiF, окислы и др.), в которых основным видом связи является иониая атомные кристаллы (алмаз, кремний, германий и многие химические соединения), в которых основные связи ковалентные металлические кристаллы. с характерной металлической связью молекулярные кристаллы, в которых связь осуществляется в основном силами Ван-дер-Ваальса. Рассмотрим кратко природу сил связи в этих кристаллах и их основные свойства.  [c.15]

Ковалентная связь возникает между атомами элементов групп IVB, VB, V1B и VIIB системы Д. И. Менделеева (рис. 1.13). Все они кристаллизуются по правилу 8 — N каждый атом окружен 8 — N ближайшими соседями, где М — номер группы, к которой принадлежит элемент. Объясняется это тем, что в валентной оболочке элемента группы N имеется 8 — N орбиталей, на которые могут быть приняты электроны соседних атомов. Так, алмаз, кремний германий, серое олово являются элементами IV группы. Поэтому они имеют тетраэдрическую решетку, в которой каждый атом окружен четырьмя ближайшими соседями, как показано на рис. 1.13, а. Мышьяк, фосфор, висмут и сурьма принадлежат к V группе периодической системы. Эти элементы имеют слоистую решетку, причем в плоскости слоя каждый атом имеет три ближайших соседа (рис. 1.13, б) слои связаны друг с другом слабыми силами Ван-дер-Ваальса. У селена и теллура, принадлежащих к VI группе, атомы образуют длинные цепочки так, что каждый имеет два ближайших соседа (рис. 1.13, в) цепочки связаны между собой силами Ван-дерт Ваальса. Наконец, в решетке йода, принадлежащего к VII труп-  [c.19]


Смотреть страницы где упоминается термин Ван-дер-Ваальса связь : [c.166]    [c.11]    [c.84]    [c.9]    [c.56]    [c.199]    [c.47]    [c.11]    [c.20]   
Физика твердого тела (1985) -- [ c.65 ]



ПОИСК



Газ Ван-дер-Ваальса

Молекулярная связь Ван-дер-Ваальса

Молекулярная связь силы Ван-дер-Ваальса



© 2025 Mash-xxl.info Реклама на сайте