Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Локальная коррозия нержавеющих сталей

Существует несколько возможностей противодействовать локальной коррозии нержавеющей стали  [c.114]

В зоне прилива характерно смачивание поверхности металла хорошо аэрированной морской водой в момент прилива. Температура металла зависит от температуры воздуха и воды, но температура воды является определяющей. Поверхность металла покрывается водорослями, которые могут производить частичную защиту конструкционных сталей и вызывать локальную коррозию нержавеющих сталей, алюминиевых сплавов.  [c.29]


Как и в случае зоны брызг, поверхности конструкций в зоне прилива находятся, по крайней мере в течение какой-то части суток, в контакте с хорошо аэрированной морской водой. Температура металла при этом зависит от температуры как воздуха, так и воды, но в основном влияние температуры океана является определяющим. Приливные течения в разных местах неодинаковы. Для таких материалов, как сталь, более интенсивному движению воды соответствует и более высокая скорость разрушения. Поверхность металла в зоне прилива обычно покрывается морскими организмами. Иногда это приводит к частичной защите металла (например, для стали) но в других случаях может усиливать локальную коррозию (нержавеющие стали).  [c.16]

Железо в почве корродирует о образованием мелких язв, коррозия нержавеющей стали в морской воде характеризуется образованием глубоких питтингов. Многие металлы в быстром потоке жидкости подвергаются локальной коррозии, называемой ударным разрушением, см. [1, рис. 1 на с. 328 и рис. 98 на G. 1107].  [c.27]

Анодная защита может предотвращать локальные виды коррозии, например, межкристаллитную коррозию нержавеющих сталей, коррозию под напряжением углеродистых и нержавеющих сталей, питтинг, коррозионную усталость металлов и сплавов.  [c.199]

Наиболее типичным примером появления локальной коррозии из-за структурных особенностей металла является межкристаллитная коррозия нержавеющих сталей и алюминиевых сплавов. Большая скорость ионизации металла по границам зерен или интерметаллических соединений приводит к преимущественному растворению этих участков, вследствие чего ослабляется связь между отдельными кристаллами. Дефекты в кристаллической решетке, концентрация внутренних напряжений, которые способствуют более легкой ионизации атомов металла, также приводят к локальной коррозии.  [c.13]

Нержавеющая сталь. При коррозии нержавеющих сталей в морской воде саморастворение металла незначительно и практического значения не имеет. Интенсивные локальные разрушения возникают в результате работы коррозионных макропар.  [c.75]

Коррозионная стойкость нержавеющих сталей в морской воде во многом зависит от их структуры. Стали мартенситного класса, содержащие 12-13 % Ст и 0,1-0,5 % С, обладают хорошей коррозионной стойкостью во многих средах, но в морской воде подвергаются заметной коррозии. Использование мартенситных сталей в морской воде и средах, содержащих хлориды, нецелесообразно из-за их склонности к локальной коррозии.  [c.20]


Нержавеющие стали по своей стойкости к общей коррозии занимают одно из первых мест среди конструкционных материалов. Вместе с тем они склонны к различным видам местной коррозии, таким, как питтинговая, межкристаллит-ная, щелевая коррозия и коррозионное растрескивание. Химический состав стали оказывает существенное влияние на ее склонность к локальной коррозии. Молибден — элемент, наиболее эффективно понижающий склонность нержавеющих сталей к питтингообразОванию и межкристаллитной коррозии.  [c.32]

Стойкость нержавеющих сталей против локальной коррозии в белой воде  [c.32]

I Одним из наиболее активных видов механического воздействия на коррозию твердых тел при их контакте в условиях агрессивных сред является трение. Локальная пластическая деформация в тонком приповерхностном слое активирует металл и разрушает за- f щитные пленки, обнажая ювенильную поверхность. Исследование, выполненное на нержавеющих сталях [130], показало, что / при трении плотность тока в области транспассивного состояния i увеличивается почти на два порядка, область активного растворения расширяется и почти полностью подавляется область пассивного состояния. Причем в пассивной области при наличии трения плотность тока почти на пять порядков выше стационарного ее значения в отсутствие трения.  [c.147]

Если нержавеющая сталь используется в среде с высоким содержанием хлорида, например в морской воде или в отбеливающих растворах, используемых в целлюлозно-бумажной промышленности, то часто возникает локальная коррозия, принимающая форму питтинга (рис. 102), который иногда вызывает перфорацию стенок трубы, или щелевой коррозии, например во фланцевых соединениях (см. рис. 22). Коррозия этих двух типов рассмотрена ниже.  [c.111]

Выбрав подходящую нержавеющую сталь, можно вообще уменьшить опасность локальной коррозии. Сопротивление ей возрастает с увеличением содержания хрома. Благоприятный эффект дает также введение в сплав молибдена или азота.  [c.114]

Как видно из табл. 17, в неподвижной воде на малых глубинах нержавеющие стали 302, 321 и 316 подвержены сильной локальной коррозии. На больших глубинах коррозионное поведение сталей 304 и 316 меняется, однако при этом часто также наблюдается локальное разрушение (табл. 19). Нержавеющие стали в этих условиях склонны к биологическому обрастанию, причем в гораздо большей степени, чем, например, медноникелевые сплавы [32].  [c.62]

Гальванические эффекты. При наличии электрического контакта титана с такими обычными металлами, как сталь или алюминий, может происходить локальная коррозия анодного элемента этой гальванической пары. Разрушение наблюдается непосредственно в месте соединения или около него и протекает в периоды, когда на поверхности металла присутствует влажная солевая пленка. Соединение титана с медью несколько усиливает коррозию меди. В гальванической паре с нержавеющей сталью влияние титана минимально. Данные о коррозии гальванопар представлены в табл. 46.  [c.117]

Существует ряд теорий, которые пытаются объяснить причины, вызывающие у нержавеющих сталей появление склонности к межкристаллитной коррозии. Наибольшим признанием пользуется гипотеза локального обеднения границ зерен стали вследствие образования богатых хромом карбидов хрома. Обедненные хромом зоны легко подвергаются действию коррозии. Как уже указывалось, образование карбидов хрома при дополнительном нагреве и сварке связано не только с изменением коррозионной стойкости стали, но и с тем, что в местах их образования наблюдается изменение электродного потенциала, магнитных свойств стали и других свойств, указывающих на возникновение структурной неоднородности.  [c.531]

В средах с высоким содержанием хлоридов отмечается протекание локальной коррозии большинства металлических материалов, в том числе нержавеющих сталей. Наиболее часто встречающейся формой локальной коррозии в морской воде является питтингообразование. Причиной появления питтингов, по-видимому, следует считать точечную перфорацию пассивной пленки на поверхности металла вследствие образования растворимых хлоридных комплексов. Внутри очагов коррозии отмечается локальное понижение pH, связанное с гидролизом продуктов коррозии.  [c.14]


Наряду с другими факторами, вызывающими и интенсифицирующими различные виды коррозии (существование пар дифференциальной аэрации, производственные дефекты металла, наличие зазоров и щелей в негерметичных механических соединениях, влияние микроорганизмов, биологическое обрастание организмами растительного и животного происхождения) контакт нержавеющей стали и металлов с различными потенциалами может вызывать локальные формы коррозии оборудования из нержавеющей стали, например питтинговую или подповерхностную.  [c.23]

Коррозию внутренних поверхностей различных емкостей целесообразно предотвращать путем нанесения алюминиевого покрытия. В особо ответственных случаях, например для защиты от коррозии изготовленных из углеродистой стали циркуляционных трубопроводов и паропроводов установок с водяным охлаждением и аппаратов, работающих при высоких давлении и температуре, на углеродистую сталь наносится плакированием покрытие из нержавеющей стали. Это покрытие является весьма стойким во всех природных водах. Эффективно покрытие из аустенитных сталей. Однако при наличии интенсивных тепловых потоков возможна коррозия защищенных поверхностей. В жестких природных водах локальная коррозия может развиваться и при небольших тепловых потоках в результате концентрирования хлоридов под отложениями. Хлориды могут накапливаться в щелях и трещинах на теплопередающих поверхностях. При наличии хлоридов возможно питтингообразование, а при механических нагрузках может протекать процесс коррозионного растрескивания под напряжением.  [c.99]

Питтинговая коррозия является одним из основных и наиболее опасных видов локального разрушения металлов и сплавов. Этому виду коррозии в водных растворах, содержащих активирующие анионы, подвергаются железо и его сплавы с хромом и никелем (нержавеющие стали), а также алюминий и его сплавы, никель, цирконий, кобальт, магний. Питтингообразование возникает, как правило, в пассивирующих растворах, в которых присутствуют окислитель и активатор. К активаторам относятся  [c.46]

Глубина экспозиции не оказывала закономерного влияния на скорости коррозии нержавеющих сталей серии AISI 400, хотя эти скорости и были ниже на глубине, чем у поверхности. Однако скорости коррозии не уменьшались с увеличением глубины. А именно, они были меньше на глубине 760 м, чем на глубине 1830 м, для двух из четырех испытанных сталей. Интенсивности локальных типов коррозии были либо такими же, либо большими на поверхности, чем на глубине. Глубина не оказывала определенного влияния на коррозию нержавеющих сталей серии AISI 400.  [c.329]

Межкристаллитная коррозия (МКК) — это локальное коррозионное разрушение по границам зерен металла, приводящее к потере прочности и пластичности. Межзереннае вещество, действующее как анод, контактирует с большой поверхностью самих зерен, являющейся катодом. Коррозия протекает быстро, глубоко проникая в металл и приводя иногда к катастрофическим разрушениям. Нержавеющие стали типа 18-8 или дюраль (4 % Си—А1), подвергнутые неправильной термообработке, склонны к МКК. Примером неэлектрохимического межкристаллитного разрушения может служить коррозия никеля при высокой температуре в се-русодержащей атмосфере. При этом происходит проникновение серы по границам зерен металла — см. [1, рис. 14 на с. 1109].  [c.28]

Если в среды, в которых нержавеющие стали пассивны, ввести некоторое количество ионов С1 или Вг , то в этих составах все нержавеющие стали проявляют склонность к локальной коррозии с образованием глубоких язв. Такие ионы, как тиосульфат S2O3", также могут вызывать питтинг. В растворах, в которых пассивность не достигается, например в деаэрированных растворах хлоридов щелочных металлов, в неокислительных растворах хлоридов металлов (Sn lj или Ni lj) или в окислительных растворах хлоридов металлов при низких pH питтинг не наблюдается даже в тех случаях, когда в кислых средах отмечается заметная общая коррозия.  [c.311]

На нержавеющих сталях, помещенных в морскую воду, глубокий питтинг развивается в течение нескольких месяцев начинается питтинг обычно в щелях или в других местах с застойным электролитом (щелевая коррозия). Склонность к локальным видам коррозии больше у мартенситных и ферритных сталей, чем у аустенитных. У последних склонность тем ниже, чем выше в них содержание никеля. Аустенитные стали 18-8, содержащие молибден (марки 316, 316L, 317), еще более стойки в морской воде, однако через 1—2,5 года и эти сплавы подвергаются щелевой и питтинговой коррозии.  [c.311]

Ионы тяжелых металлов, особенно свинца, уменьшают не только общую коррозию, но и локальную. Так, есть сведения, что малые добавки ионов свинца почти полностью подавляют коррозионное растрескивание нержавеющей стали под напряжением и в условиях активного растворения в серной и азотной кислотах [214]. При эффективных концентрациях ионов свинца (10— — 10- моль/л) равновесные потенциалы свинца отрицательнее стационарного потенциала нержавеющей стали и поэтому контактное выделение с образованием фазового осадка здесь исключено и на поверхности стали возникает лишь субмономолекулярный слой свинца. Природа этого процесса еще окончательно не выяснена, но реальность процесса несомненна [209 238].  [c.88]

Столь значительный сдвиг потенциала анодного нарушения пассивного состояния (потенциала пробоя ) в сторону отрицательных значений для пришовной области ведет к особой опасности локального нарушения пассивности в тех коррозионных средах, где нержавеющая сталь при отсутствии напряжений находится в устойчивом пассивном состоянии, с образованием условий для усиленной локальной коррозии (в том числе коррозионного растрескивания) при наличии коррозионных гальванопар на поверхности сварного соединения типа активная пришовная зона — пассивная остальная поверхность.  [c.223]


Нержавеющие стали особенно чувствительны к локальной коррозии в присутствии галидных ионов. Среди них наиболее коррозивен и имеет наибольшее практическое значение хлорид-ион. Одновремен-  [c.111]

Конструкция должна быть спроктирована так, чтобы избегать зазоров и образования осадков. Фланцевые соединения можно заменять сварными окалину, образовавшуюся при сварке, необходимо удалять, а трубопроводы, где может осаждаться грязь или происходить органическое обрастание, поделжат регулярной очистке. Стойкость нержавеющих сталей против локальной коррозии можно оиенивать следующим образом  [c.114]

Вместе с тем, необходимо выделить группу легко пассивирующихся металлов и сплавов, коррозионная устойчивость которых в атмосферных условиях не уступает благородным металлам. К ним следует отнести титан, тантал, цирконий, ниобий, хром, алюминий. Пассивное состояние этих металлов обусловлено образованием на их поверхности химически инертных оксидных пленок. Пассивирующие пленки могут разрушаться под действием ионов галогенов (С1 , Вг , 1 , F ), поэтому в морской атмосфере на алюминиевых сплавах, нержавеющих сталях и других пассивирующихся системах могут появляться локальные очаги коррозии.  [c.90]

Высокая оценка коррозионной стойкости сплавов никель —медь в морской атмосфере подтверждается н на практике. Уже много лет с успехом используется в качестве конструкционного материала для морских приложений сплав Монель 400, нз которого изготавливают палубную арматуру, стенды для коррозионных испытаний и т.д. Подобно нержавеющим сталям, сплав Монель 400 склонен к коррозии под действием кислородных концентрационных элементов. Поэтому еще на стадии проектпрования следует по возможности избегать наличия щелей и других мест, где мог бы скапливаться солевой раствор, так как при этом возникают локальные коррозионные пары.  [c.78]

При полном погружении сплав Инколой 825 может испытывать локальную коррозию в неподвижной морской воде при обрастании и в щелях. Тем не менее стойкость этого сплава к питтинговой и щелевой коррозии гораздо выше, чем у аустенитных нержавеющих сталей. Так, в одном из экспериментов скорость коррозии сплава Инколой 825 в условиях погружения составила при 3-летней экспозиции 0,46 мкм/год. С такой же скоростью протекала и коррозия этого сплава на среднем уровне прилива и в зоне брызг. При этом локальная коррозия не наблюдалась ни в условиях хорошей аэрации в зоне брызг, ни при полном погружении. В условиях погружения, правда, возможно появление отдельных питтингов, если степень аэрации морской воды недостаточна. В табл. 30 приведены результаты испытаний сплава Инколой 825 па малых глубинах. Инколой 825 стоек к коррозионному растрескиванию под напряжением в горячей морской воде, поэтому применяется в теплообменниках, использующих морскую воду.  [c.86]

Хром. Листовой хром не корродирует в растворе Na l при температурах вплоть до точки кипения (см. табл. 62) и в этом отношении аналогичен титану. Прочная пассивная пленка на хроме должна быть стойкой в морской воде, а локальная коррозия менее вероятна, чем в случае нержавеющих сталей.  [c.162]

II никелевого сплава Ni—22Сг—9Мо—2Fe—3,75МЬ-ЬТа могут нспользо ваться в течение 2 лет без катодной защиты. Фосфористая бронза, оцинкованная сталь и нержавеющая сталь 304L, плакированная сплавом 90—10 Си—Ni, требуют применения катодной защиты. Сталь 304 без покрытия и нержавеющая сталь 205, плакированная сплавом 90—10 Си—Ni, подвергались локальной коррозии даже в условиях катодной защиты.  [c.204]

Химический состав нержавеющих сталей серии A1SI 300 приведен в табл. 115, скорости и типы коррозии — в табл. 116, коррозионное поведение под напряжением — в табл. 117 и влияние экспозиции на их механические свойства — в табл. 118, Коррозионное поведение нержавеющих сталей серии AIS1 300 было очень неустойчивым и непредсказуемым. Они подвергались щелевой, питтинговой и туннельной коррозии в разной степени — от начальных проявлений до сквозных язв и туннелей, распространяющихся вдоль поверхности образцов на расстояние 28 см. Сравнение интенсивностей упомянутых выше типов локальной коррозии с соответствующими скоростями равномерной коррозии не показало наличия между ними определенных корреляций.  [c.313]

Коррозионное поведение нержавеющих сталей серии AISI 400 было неустойчивым и характеризовалось локальными типами коррозии (щелевой, пнттинговой и туннельной). Интенсивность этих типов коррозии менялась от нуля до полной перфорации образцов щелевой и питтин-говой коррозией и туннельной коррозии, распространившейся вдоль поверхности образцов на всю их длину в 30,5 см.  [c.329]

UIi. poKoe ирнмепеиие органических кислот и, в частности, сульфаминовой дл.ч отмывок отложений с оборудования, изготовленного из углеродистых и нержавеющих сталей, вызвало необходимость разработки ингибиторов, предотвращающих растравливание поверхности, локальные виды коррозии, коррозионное растрескивание.  [c.116]

Введение в сталь никеля способствует не только улучшению механических свойств вследствие аустенизации структуры, но и облегчает пассивацию и повышает устойчивость пассивного состояния, в том числе в средах, провоцирующих развитие таких локальных коррозионных процессов как питтинговая и щелевая коррозия. Повышение коррозионной стойкости сталей вследствие легирования их никелем не связано с изменением состава и свойств пассивирующей пленки — никель в составе пассивирующих пленок не обнаружен. Недостатком хромоникелевых аустенитных сталей является их низкая стойкость портив коррозионного растрескивания, минимум которой приходится на наиболее широко распространенные стали типа 18 r-8Ni. Более 70% всех производимых нержавеющих сталей являются сталями аустенитного класса, содержащими > 17% хрома и свыше 10 % никеля.  [c.188]

Для большего повышения коррозионной стойкости в состав хромоникелевых нержавеющих сталей вводят молибден. Молибден улучшает пассивируемость сталей в неоьсислительных средах, сужая область активного растворения, и способствует существенному снижению их склонности к питтинговой и щелевой коррозии за счет затруднения питтингообразования, облегчения репассивации, снижения скорости растворения металла в очагах локальной коррозии и увеличения индукционного периода.  [c.188]

Коррозионная стойкость нержавеющей стали выше, чем латуни. Так, нержавеющая сталь типов 18/8 и 304 обладает удовлетворительной коррозионной стойкостью в речной и морской водах при отсутствии на ее поверхности наносных отложений, накипи и продуктов обрастания. В противном случае они подвергаются язвенной коррозии, коррозионному растрескиванию и другим видам локальной коррозии, которая интенсифициру--ется содержащимися в воде хлоридами. Толщина стенок трубок из нерл авеющей стали может быть снижена до 0,71 мм по сравнению с 1,29 мм для трубок из медных сплавов.  [c.143]

Исследования, проведенные в шестидесятых годах, показали, что структурная коррозия имеет прямую зависимость от электродного потенциала [35—37]. Это обстоятельство способствовало интенсификации разработок ускоренных методик определения склонности нержавеющих сталей к отдельным видам локальной коррозии, в частности, межкристаллитной. Установлено, что межкристаллитная коррозия (МКК) нержавеющих сталей наиболее интенсивно проявляется в переходной области потенциалов (участок резкого снижения анодной потенцио-статической кривой, так называемый падающий) Аф мкк (см. рис. 1.1) [35—37], а также в области перепасснвации Дф мкк  [c.17]


Для нержавеющих сталей локальные виды коррозии проявляются более четко в определенных областях потенциалов. Ацелло и Грин [56] проводили исследования образцов в среде 10 н. H2SO4 с 0,5 н. НС1. Они пришли к выводу, что коррозионное растрескивание происходит только в ограниченной области потенциалов. Авторы рекомендуют применять анодную защиту для устранения коррозионного растрескивания нержавеющих яустенитньтх сталей. Длительные испытания п течение 1300— 2700 ч подтвердили эти выводы.  [c.20]

Фундаментальные электрохимические исследования МКК сделали возможным создание новых ускоренных методов определения склонности нержавеющих сталей к этому виду локальной коррозии [48—52] и П03В0.ПИЛП сформулировать основные принципы разработки растворов для ускоренных коррозионных испытаний сталей на МКК [50, 51, 53].  [c.59]


Смотреть страницы где упоминается термин Локальная коррозия нержавеющих сталей : [c.508]    [c.73]    [c.335]    [c.111]    [c.249]    [c.598]    [c.137]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.18 ]



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

Анодная защита нержавеющих сталей от некоторых видов локальной коррозии

Г локальный

К локальности

Коррозия локальная

Нержавеющая сталь локальная

Нержавеющие Коррозия

Сталь коррозия

Сталь нержавеющая



© 2025 Mash-xxl.info Реклама на сайте