Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нержавеющая сталь локальная

Железо в почве корродирует о образованием мелких язв, коррозия нержавеющей стали в морской воде характеризуется образованием глубоких питтингов. Многие металлы в быстром потоке жидкости подвергаются локальной коррозии, называемой ударным разрушением, см. [1, рис. 1 на с. 328 и рис. 98 на G. 1107].  [c.27]

Коррозионная стойкость нержавеющих сталей в морской воде во многом зависит от их структуры. Стали мартенситного класса, содержащие 12-13 % Ст и 0,1-0,5 % С, обладают хорошей коррозионной стойкостью во многих средах, но в морской воде подвергаются заметной коррозии. Использование мартенситных сталей в морской воде и средах, содержащих хлориды, нецелесообразно из-за их склонности к локальной коррозии.  [c.20]


Нержавеющие стали по своей стойкости к общей коррозии занимают одно из первых мест среди конструкционных материалов. Вместе с тем они склонны к различным видам местной коррозии, таким, как питтинговая, межкристаллит-ная, щелевая коррозия и коррозионное растрескивание. Химический состав стали оказывает существенное влияние на ее склонность к локальной коррозии. Молибден — элемент, наиболее эффективно понижающий склонность нержавеющих сталей к питтингообразОванию и межкристаллитной коррозии.  [c.32]

Стойкость нержавеющих сталей против локальной коррозии в белой воде  [c.32]

Максимальный механохимический эффект отмечается тогда, когда площадь, с которой растворяется металл, ограничена областью максимальной деформационной активации металла. Такие условия могут возникать в случае деформирования нержавеющих сталей активное растворение происходит с локальных участков в местах выхода плоскостей скольжения, тогда как на всей осталь-ной поверхности металл запассивирован.  [c.79]

I Одним из наиболее активных видов механического воздействия на коррозию твердых тел при их контакте в условиях агрессивных сред является трение. Локальная пластическая деформация в тонком приповерхностном слое активирует металл и разрушает за- f щитные пленки, обнажая ювенильную поверхность. Исследование, выполненное на нержавеющих сталях [130], показало, что / при трении плотность тока в области транспассивного состояния i увеличивается почти на два порядка, область активного растворения расширяется и почти полностью подавляется область пассивного состояния. Причем в пассивной области при наличии трения плотность тока почти на пять порядков выше стационарного ее значения в отсутствие трения.  [c.147]

Если нержавеющая сталь используется в среде с высоким содержанием хлорида, например в морской воде или в отбеливающих растворах, используемых в целлюлозно-бумажной промышленности, то часто возникает локальная коррозия, принимающая форму питтинга (рис. 102), который иногда вызывает перфорацию стенок трубы, или щелевой коррозии, например во фланцевых соединениях (см. рис. 22). Коррозия этих двух типов рассмотрена ниже.  [c.111]

Существует несколько возможностей противодействовать локальной коррозии нержавеющей стали  [c.114]

Выбрав подходящую нержавеющую сталь, можно вообще уменьшить опасность локальной коррозии. Сопротивление ей возрастает с увеличением содержания хрома. Благоприятный эффект дает также введение в сплав молибдена или азота.  [c.114]


В зоне прилива характерно смачивание поверхности металла хорошо аэрированной морской водой в момент прилива. Температура металла зависит от температуры воздуха и воды, но температура воды является определяющей. Поверхность металла покрывается водорослями, которые могут производить частичную защиту конструкционных сталей и вызывать локальную коррозию нержавеющих сталей, алюминиевых сплавов.  [c.29]

Как и в случае зоны брызг, поверхности конструкций в зоне прилива находятся, по крайней мере в течение какой-то части суток, в контакте с хорошо аэрированной морской водой. Температура металла при этом зависит от температуры как воздуха, так и воды, но в основном влияние температуры океана является определяющим. Приливные течения в разных местах неодинаковы. Для таких материалов, как сталь, более интенсивному движению воды соответствует и более высокая скорость разрушения. Поверхность металла в зоне прилива обычно покрывается морскими организмами. Иногда это приводит к частичной защите металла (например, для стали) но в других случаях может усиливать локальную коррозию (нержавеющие стали).  [c.16]

Как видно из табл. 17, в неподвижной воде на малых глубинах нержавеющие стали 302, 321 и 316 подвержены сильной локальной коррозии. На больших глубинах коррозионное поведение сталей 304 и 316 меняется, однако при этом часто также наблюдается локальное разрушение (табл. 19). Нержавеющие стали в этих условиях склонны к биологическому обрастанию, причем в гораздо большей степени, чем, например, медноникелевые сплавы [32].  [c.62]

Гальванические эффекты. При наличии электрического контакта титана с такими обычными металлами, как сталь или алюминий, может происходить локальная коррозия анодного элемента этой гальванической пары. Разрушение наблюдается непосредственно в месте соединения или около него и протекает в периоды, когда на поверхности металла присутствует влажная солевая пленка. Соединение титана с медью несколько усиливает коррозию меди. В гальванической паре с нержавеющей сталью влияние титана минимально. Данные о коррозии гальванопар представлены в табл. 46.  [c.117]

Тонкостенный сферический сосуд высокого давления внутреннего диаметра 50 дюймов изготовлен из отожженной нержавеющей стали 430. Сосуд должен быть спроектирован так, чтобы при достижении давлением величины 2000 фунт/ /дюйм Б нем зарождалась локальная течь (достигалась точка неустойчивости). Какова должна быть начальная толщина стенки этого сосуда  [c.129]

Для нержавеющих сталей локальные виды коррозии проявляются более четко в определенных областях потенциалов. Ацелло и Грин [56] проводили исследования образцов в среде 10 н. H2SO4 с 0,5 н. НС1. Они пришли к выводу, что коррозионное растрескивание происходит только в ограниченной области потенциалов. Авторы рекомендуют применять анодную защиту для устранения коррозионного растрескивания нержавеющих яустенитньтх сталей. Длительные испытания п течение 1300— 2700 ч подтвердили эти выводы.  [c.20]

Межкристаллитная коррозия (МКК) — это локальное коррозионное разрушение по границам зерен металла, приводящее к потере прочности и пластичности. Межзереннае вещество, действующее как анод, контактирует с большой поверхностью самих зерен, являющейся катодом. Коррозия протекает быстро, глубоко проникая в металл и приводя иногда к катастрофическим разрушениям. Нержавеющие стали типа 18-8 или дюраль (4 % Си—А1), подвергнутые неправильной термообработке, склонны к МКК. Примером неэлектрохимического межкристаллитного разрушения может служить коррозия никеля при высокой температуре в се-русодержащей атмосфере. При этом происходит проникновение серы по границам зерен металла — см. [1, рис. 14 на с. 1109].  [c.28]

Первые два сплава иногда легируют титаном или ниобием для повышения допустимого содержания углерода и азота. Все эти сплавы можно закалять от 925 °С без ухудшения коррозионных свойств. Благодаря тому, что они сохраняют пассивность в агрессивных средах, их коррозионная стойкость обычно выше, чем у обычных ферритных и некоторых аустенитных нержавеющих сталей, представленных в табл. 18.2. Они более устойчивы, например в растворах Na l, HNO3 и различных органических кислот. Если по какой-либо причине происходит локальная или общая депассивация этих сталей, то они корродируют с большей скоростью, чем активированные никельсодержащие аустенитные нержавеющие стали, имеющие в своем составе такие же количества хрома и молибдена [8, 9].  [c.301]


Если в среды, в которых нержавеющие стали пассивны, ввести некоторое количество ионов С1 или Вг , то в этих составах все нержавеющие стали проявляют склонность к локальной коррозии с образованием глубоких язв. Такие ионы, как тиосульфат S2O3", также могут вызывать питтинг. В растворах, в которых пассивность не достигается, например в деаэрированных растворах хлоридов щелочных металлов, в неокислительных растворах хлоридов металлов (Sn lj или Ni lj) или в окислительных растворах хлоридов металлов при низких pH питтинг не наблюдается даже в тех случаях, когда в кислых средах отмечается заметная общая коррозия.  [c.311]

На нержавеющих сталях, помещенных в морскую воду, глубокий питтинг развивается в течение нескольких месяцев начинается питтинг обычно в щелях или в других местах с застойным электролитом (щелевая коррозия). Склонность к локальным видам коррозии больше у мартенситных и ферритных сталей, чем у аустенитных. У последних склонность тем ниже, чем выше в них содержание никеля. Аустенитные стали 18-8, содержащие молибден (марки 316, 316L, 317), еще более стойки в морской воде, однако через 1—2,5 года и эти сплавы подвергаются щелевой и питтинговой коррозии.  [c.311]

Ионы тяжелых металлов, особенно свинца, уменьшают не только общую коррозию, но и локальную. Так, есть сведения, что малые добавки ионов свинца почти полностью подавляют коррозионное растрескивание нержавеющей стали под напряжением и в условиях активного растворения в серной и азотной кислотах [214]. При эффективных концентрациях ионов свинца (10— — 10- моль/л) равновесные потенциалы свинца отрицательнее стационарного потенциала нержавеющей стали и поэтому контактное выделение с образованием фазового осадка здесь исключено и на поверхности стали возникает лишь субмономолекулярный слой свинца. Природа этого процесса еще окончательно не выяснена, но реальность процесса несомненна [209 238].  [c.88]

Столь значительный сдвиг потенциала анодного нарушения пассивного состояния (потенциала пробоя ) в сторону отрицательных значений для пришовной области ведет к особой опасности локального нарушения пассивности в тех коррозионных средах, где нержавеющая сталь при отсутствии напряжений находится в устойчивом пассивном состоянии, с образованием условий для усиленной локальной коррозии (в том числе коррозионного растрескивания) при наличии коррозионных гальванопар на поверхности сварного соединения типа активная пришовная зона — пассивная остальная поверхность.  [c.223]

Нержавеющие стали особенно чувствительны к локальной коррозии в присутствии галидных ионов. Среди них наиболее коррозивен и имеет наибольшее практическое значение хлорид-ион. Одновремен-  [c.111]

Конструкция должна быть спроктирована так, чтобы избегать зазоров и образования осадков. Фланцевые соединения можно заменять сварными окалину, образовавшуюся при сварке, необходимо удалять, а трубопроводы, где может осаждаться грязь или происходить органическое обрастание, поделжат регулярной очистке. Стойкость нержавеющих сталей против локальной коррозии можно оиенивать следующим образом  [c.114]

Вместе с тем, необходимо выделить группу легко пассивирующихся металлов и сплавов, коррозионная устойчивость которых в атмосферных условиях не уступает благородным металлам. К ним следует отнести титан, тантал, цирконий, ниобий, хром, алюминий. Пассивное состояние этих металлов обусловлено образованием на их поверхности химически инертных оксидных пленок. Пассивирующие пленки могут разрушаться под действием ионов галогенов (С1 , Вг , 1 , F ), поэтому в морской атмосфере на алюминиевых сплавах, нержавеющих сталях и других пассивирующихся системах могут появляться локальные очаги коррозии.  [c.90]

Высокая оценка коррозионной стойкости сплавов никель —медь в морской атмосфере подтверждается н на практике. Уже много лет с успехом используется в качестве конструкционного материала для морских приложений сплав Монель 400, нз которого изготавливают палубную арматуру, стенды для коррозионных испытаний и т.д. Подобно нержавеющим сталям, сплав Монель 400 склонен к коррозии под действием кислородных концентрационных элементов. Поэтому еще на стадии проектпрования следует по возможности избегать наличия щелей и других мест, где мог бы скапливаться солевой раствор, так как при этом возникают локальные коррозионные пары.  [c.78]

При полном погружении сплав Инколой 825 может испытывать локальную коррозию в неподвижной морской воде при обрастании и в щелях. Тем не менее стойкость этого сплава к питтинговой и щелевой коррозии гораздо выше, чем у аустенитных нержавеющих сталей. Так, в одном из экспериментов скорость коррозии сплава Инколой 825 в условиях погружения составила при 3-летней экспозиции 0,46 мкм/год. С такой же скоростью протекала и коррозия этого сплава на среднем уровне прилива и в зоне брызг. При этом локальная коррозия не наблюдалась ни в условиях хорошей аэрации в зоне брызг, ни при полном погружении. В условиях погружения, правда, возможно появление отдельных питтингов, если степень аэрации морской воды недостаточна. В табл. 30 приведены результаты испытаний сплава Инколой 825 па малых глубинах. Инколой 825 стоек к коррозионному растрескиванию под напряжением в горячей морской воде, поэтому применяется в теплообменниках, использующих морскую воду.  [c.86]

Хром. Листовой хром не корродирует в растворе Na l при температурах вплоть до точки кипения (см. табл. 62) и в этом отношении аналогичен титану. Прочная пассивная пленка на хроме должна быть стойкой в морской воде, а локальная коррозия менее вероятна, чем в случае нержавеющих сталей.  [c.162]


II никелевого сплава Ni—22Сг—9Мо—2Fe—3,75МЬ-ЬТа могут нспользо ваться в течение 2 лет без катодной защиты. Фосфористая бронза, оцинкованная сталь и нержавеющая сталь 304L, плакированная сплавом 90—10 Си—Ni, требуют применения катодной защиты. Сталь 304 без покрытия и нержавеющая сталь 205, плакированная сплавом 90—10 Си—Ni, подвергались локальной коррозии даже в условиях катодной защиты.  [c.204]

Химический состав нержавеющих сталей серии A1SI 300 приведен в табл. 115, скорости и типы коррозии — в табл. 116, коррозионное поведение под напряжением — в табл. 117 и влияние экспозиции на их механические свойства — в табл. 118, Коррозионное поведение нержавеющих сталей серии AIS1 300 было очень неустойчивым и непредсказуемым. Они подвергались щелевой, питтинговой и туннельной коррозии в разной степени — от начальных проявлений до сквозных язв и туннелей, распространяющихся вдоль поверхности образцов на расстояние 28 см. Сравнение интенсивностей упомянутых выше типов локальной коррозии с соответствующими скоростями равномерной коррозии не показало наличия между ними определенных корреляций.  [c.313]

Коррозионное поведение нержавеющих сталей серии AISI 400 было неустойчивым и характеризовалось локальными типами коррозии (щелевой, пнттинговой и туннельной). Интенсивность этих типов коррозии менялась от нуля до полной перфорации образцов щелевой и питтин-говой коррозией и туннельной коррозии, распространившейся вдоль поверхности образцов на всю их длину в 30,5 см.  [c.329]

Глубина экспозиции не оказывала закономерного влияния на скорости коррозии нержавеющих сталей серии AISI 400, хотя эти скорости и были ниже на глубине, чем у поверхности. Однако скорости коррозии не уменьшались с увеличением глубины. А именно, они были меньше на глубине 760 м, чем на глубине 1830 м, для двух из четырех испытанных сталей. Интенсивности локальных типов коррозии были либо такими же, либо большими на поверхности, чем на глубине. Глубина не оказывала определенного влияния на коррозию нержавеющих сталей серии AISI 400.  [c.329]

Распределение скоростей в центральной ячейке пучка исследовалось в сечении, расположенном на расстоянии 425 мм от входа (L/ 3== = 46 при гидродинамическом диаметре канала d, = = 4(и/ 7=9,26 мм). В этом сечении с помощью нневмометрической трубки Пито и камеры статического напора дифференциальным манометром измерялись локальные скоростные напоры от стенки стержня точки О по оси у (фиг. 1). Пнев-мометрическая трубка из нержавеющей стали (1Х18Н9Т) длиной 10 мм, диаметром 0,4 X 0,1 мм перемещалась микрометрическим винтом (0,062 мм на одно деление нониуса). Диаметр и длина трубки выбирались из условий а тр<0,1 6о и /тр> 20 тр[4, 6], где бо = 4,3 мм. Принятые размеры измерительной трубки не искажают распределения скоростей при бо = 4,3 мм и качественно отражают величину скорости при меньших значениях б. Среднеквадратичная ошибка при измерении локальной скорости не превышает 1%.  [c.38]

Через следующие 8000 ч йз-за локальной эрозии снова заменили часть труб и начали экспериментировать с различными покрытиями и оребрением. Там же указывалось на необходимость изготавливать чехлы для термопар в слое из износостойкого материала, например из плакированной нержавеющей стали. Однако Стрингер [3] установил, что покрытие на трубах из А13О3 оказалось неэффективным.  [c.82]

На рис. 3-28 дана схема опытной установки для исследования теплоотдачи в потоке капельной жидкости В условиях ее нагревания с давлением, близким iK атмосферному, по методу локального моделирования (Л. 7]. Опытная установка представляет собой гидродинамическую трубу замкнутого типа. Рабочий участок ее 1 имеет сечение 80x160 мм на этом участке устанавливается исследуемый трубный пучок 2. Пучок составлен из труб диаметром 10 мм, выполненных из нержавеющей стали. Трубы располагаются в коридорном порядке в 10 рядов с одинаковым расстоянием в поперечном и продольном направлении, равном 1,57 диаметра. Калориметрическая трубка 3 выполняется из меди. Она устанавливается в середине пятого ряда трубного пучка, где поток воздуха имеет стабилизированное состояние. Циркуляция воды через исследуемый трубный пучок в гидродинами-13 в. А. Оснпоаа. 193  [c.193]

В измерительной схеме применение эталонного датчика обеспечивает компенсацию изменения химического состава и температуры исследуемой жидкостной пленки. Для измерения волновых параметров пленки в опытах применялись датчики со стержневыми электродами. Диаметр электродов и расстояние между ними были выбраны в процессе предварительных экспериментов таким образом, чтобы обеспечить по возможности в большей области ожидаемых толщин пленки зависимость, близкую к линейной, выходного сигнала прибора от толщины пленки. В экспериментах были использованы электроды, изготовленные из нержавеющей стали, диаметром 0,9 мм, расстояние между их центрами 4 мм. Датчики были установлены на расстоянии 350, 650 и 925, 950 мм от входной щели. Опыты показали, что стабилизация волновых параметров пленки наступает при L 800 мм для Reg = 800, а стабилизация профиля скорости воздушного потока — при L = 700мм для Re = 12 000. Таким образом, на участке канала с L > 800 мм в любом из рабочих режимов происходит установившееся однонаправленное горизонтальное воздуховодяное расслоенное течение. Измерения волновых параметров проводились с помощью датчиков, установленных на расстоянии 925 и 950 мм. Согласно рис. 2.29, а сигнал от датчика электропроводности поступает к ИТП-1, измеряющему толщины пленок. К выходу этого прибора под ключается шлейфовый осциллограф, регистрирующий локальные мгновенные толщины пленок жидкости. Использовались различные типы проволочных датчиков, показанных на рис. 2.29, б.  [c.80]

UIi. poKoe ирнмепеиие органических кислот и, в частности, сульфаминовой дл.ч отмывок отложений с оборудования, изготовленного из углеродистых и нержавеющих сталей, вызвало необходимость разработки ингибиторов, предотвращающих растравливание поверхности, локальные виды коррозии, коррозионное растрескивание.  [c.116]


Смотреть страницы где упоминается термин Нержавеющая сталь локальная : [c.85]    [c.117]    [c.331]    [c.73]    [c.178]    [c.77]    [c.79]    [c.335]    [c.125]    [c.160]    [c.111]    [c.249]    [c.598]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.18 ]



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

Анодная защита нержавеющих сталей от некоторых видов локальной коррозии

Г локальный

К локальности

Локальная коррозия нержавеющих сталей

Сталь нержавеющая



© 2025 Mash-xxl.info Реклама на сайте