Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кельвина пространственные

Приведем теперь результаты решения задач по определению коэффициента интенсивности напряжений экстраполяционным методом ГИУ (см. 14). Для численной реализации были написаны программы решения плоских и пространственных задач теории упругости методом интегральных уравнений (14.9), полученных на основе решения Кельвина [77]. Решение уравнения осуществлялось методом последовательных приближений с предварительной регуляризацией сингулярного интеграла по формуле (14.14).  [c.112]


А. При начальном ламинарном пограничном слое на срезе сопла в слое смешения (x/d < 1) формируется по существу двумерная пространственная неустойчивость Кельвина-Гельмгольца с характеристиками, которые  [c.22]

В качестве примеров исследованы задачи о росте трешин в материалах, описываемых моделями Максвелла, Фойгта и Кельвина (стандартное линейное тело). В заключение рассмотренная задача обобщается на пространственный случай. Указывается, что из полученных результатов легко найти решение задачи о росте дискообразной трещины в вязко-упругом массиве (вязко-упругий аналог задачи Зака). В случае вязко-упругого аналога задачи Гриффитса для тела Максвелла получена простая формула  [c.12]

Метод потенциалов может быть использован для решения пространственных задач теории упругости в случае анизотропии общего вида. Для построения соответствующих интегральных уравнений необходимо (как и в случае изотропной среды) располагать рещением Кельвина — Сомильяны.  [c.662]

Весьма поучительна история возникновения и развития четвертой теории. Основная ее идея, по-видимому, впервые, еще до Губера, возникла у Дж. К. Максвелла, который в письме к У. Томсону (лорду Кельвину) писал у меня имеются веские основания думать, что когда энергия (искажения формы) достигает известного предела, элемент выходит из строя . Эта идея, к которой Максвелл больше не возвращался, оставалась неизвестной до опубликования писем Дж. К. Максвелла У. Томсону, происшедшего уже после ) возникновения первого варианта энергетической теории предельного состояния материала. Упомянутый первый вариант возиик в 1885 г, в работе Е. Бельграми2), когда он выдвинул гипотезу, согласно которой предельное состояние материала, независимо от того, находится ли он в линейном или сложном (плоском или пространственном) напряженном состоянии, наступает при достижении удельной потенциальной энергией деформации в окрестности рассматриваемой точки тела предельной (опасной) величины WОбращаем внимание на то, что здесь речь идет не об удельной потенциальной энергии формоизменения, а о полной удельной потенциальной энергии деформации.  [c.534]

В системе уравнений (8.42), (8.44) диссипация энергии учтена по гипотезе Рэлея. Аналогичный результат можно получить, если рассеяние энергии учитывать по гипотезе Кельвина—Фойгта. Учтем рассеяние энергии по гипотезе Е. С. Сорокина. Примем предпосылку, которая принимается при построении таких моделей [54] логарифмический декремент колебаний всех тел механической системы постоянный. Тогда [ ] = onst и [Ц/)] = onst, см. выражение (8.33). Линейная модель пространственных коле-  [c.347]


XIX в. в работах В. Фойхта и Дж. Томсона (Кельвина). В пространственном случае эти модели представляют собой линейную аппроксимацию общих тензорных соотношений между компонентами напряжений, скоростей изменения напряжений и скоростей деформаций. Поэтому они позволяют использовать упругий потенциал в виде квадратичной функции деформаций в сочетании с квадратичной функцией вязкого рассеивания, что практически позволяет в силу принципа соответствия находить решения уп-руго-вязких задач в тех случаях, когда известны соответствующие решения упругих задач. Можно рассматривать среды, которые представляют собой различные комбинации моделей Кельвина и Фойгта. Подробное исследование вязко-упругих моделей проделано А. Ю. Ишлинским Дифференциальные соотношения, содержащие напряжения и деформации, а также их производные, с помощью преобразований Лапласа и теоремы свертки можно  [c.272]

При применении принципа Бейтмена — Кельвина для исследования плоских течений вводят в качестве искомой функции функцию тока. Уравнение неразрывности выполняется тогда автоматически, а граничное условие сводится к заданию величины на ё. Аналогичные схемы предлагались и для исследования пространственных течений ), однако не ясно, получается ли при этом какое-либо преимущество по сравнению с использованием в качестве неизвестной р.  [c.147]

Интересные результаты даны при формулировке пространственной задачи теории упругости. Дано математическое описание (изучено напряженно-деформированное состояние) задачи Кельвина о сосредоточенной силе в бесконечном теле, задачи Буссинеска о нормальной сосредоточенной нагрузке к полупространству, задачи Черрути о касательной сосредоточенной нагрузке на полупространство, задачи Миндлина о сосредоточенной силе внутри полупространства, задачи Ламе о полой сфере, нагруженной радиальными давлениями по внутренней и внешней поверхностям, и задачи Леона о напряжениях в сферической выемке в бесконечном теле при растяжении.  [c.6]

Крупномасштабные волны типа волн Россби, Кельвина и др. оказывают существенное влияние на термогидродинамику океана, взаимодействие атмосферы и океана, климат и погоду. Свойства многих из этих волн существенно отличаются от свойств поверхностных гравитационных волн. Например, волны Кельвина локализованы в узкой шельфовой зоне, распространяются в северном полушарии вдоль берега против часовой стрелки. Экваториальные волны Россби, имея пространственные масштабы в сотни километров, локализуются вдоль экватора и проявляются не в изменении уровня, а прежде всего в форме вихревых течений.  [c.130]

Шриффер [91] признавал, что каналы простраственного заряда могут быть настолько узки, что будет иметь место квантование движения и при температурах в несколько градусов Кельвина уровни расщепятся более чем на кТ. Полагая, однако, что поверхность должна всегда быть сильно рассеивающей, он сделал заключение, что квантованные уровви в канале должны размываться и все квантовые эффекты исчезать. Квантовое расширение пространственного заряда в соответствии с принципом неопределенности, однако, должно иметь место даже при размытых уровнях, и этот факт будет иметь ряд последствий в явлениях переноса [79]. Кроме того, теперь ясно, что частично зеркальное отражение электронов, участвующих в явлениях переноса на поверхности кристалла, не является необычным, так что могут существовать дискретные канальные уровни, которые могут вызывать качественно новые явления.  [c.131]


Смотреть страницы где упоминается термин Кельвина пространственные : [c.509]   
Численные методы в теории упругости и пластичности (1995) -- [ c.9 ]



ПОИСК



Кельвин



© 2025 Mash-xxl.info Реклама на сайте