Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тело парамагнитное

Намагниченность, следовательно, пропадает при температуре Кюри. Выше этой температуры твердое тело парамагнитно. На рис. 52 показана полная температурная зависимость намагничения по уравнению (40.8) и сравнение с экспериментом.  [c.173]

Тело парамагнитно, если его атомы (ионы) имеют собственные магнитные моменты. В отсутствие поля тепловое движение приводит к хаотической ориентации элементарных магнитных моментов, вследствие чего тело немагнитно. Внешнее магнитное поле преодолевает влияние теплового движения и атомные магнитные моменты ориентируются в одном направлении. Из сказанного очевидно, что восприимчивость парамагнетиков зависит от температуры (парамагнетизм решетки). Парамагнетики имеют малую положительную восприимчивость, слабо намагничиваются, втягиваются в неоднородное магнитное поле.  [c.82]


Жидкость, например, отличается от газа наличием свободной поверхности, а от твердого тела—отсутствием правильной кристаллической решетки. Различные полиморфные модификации твердого тела различаются своей кристаллической структурой. Говорят о металлической фазе и о фазе диэлектрика, о парамагнитной и ферромагнитной фазах данного вещества и т.д.  [c.126]

При еще более низких температурах существуют магнитные газы в парамагнитных твердых телах. Речь идет о веществах, частицы которых имеют произвольно ориентированные в отсутствие поля магнитные моменты, так что в среднем образец такого вещества не поляризован. При включении поля происходит ориентация элементарных магнитиков и вещество приобретает суммарный магнитный момент. Адиабатическое размагничивание таких тел эквивалентно адиабатическому расширению газа, так как работа размагничивания производится за счет внутренней энергии тела и оно должно охлаждаться. Для количественной характеристики процесса, основываясь на (9.30), введем функцию состояния, обобщенную энтальпию, Н = Н—УЖЖ, дифференциал которой при постоянном давлении и химическом составе системы  [c.163]

Глава 8 (Элементарная динамика твердых тел). В курс, преподаваемый по минимальной программе, эту главу можно не включать. В демонстрации входят гироскоп, ядерный магнитный резонанс или электронный парамагнитный резонанс и опыты с колесом и осью.  [c.15]

Кристаллы со слабой мео/сионной связью. К ним относят твердые тела, в которых связь между ионами столь слаба, что парамагнитный момент может быть вычислен суммированием моментов свободных атомов (как в газе). Данному условию удовлетворяют многие соли редкоземельных, элементов.  [c.329]

Парамагнитные свойства в твердых телах, состоящих из атомов или ионов, обладающих Магнитным моментом, могут осложняться сильным взаимодействием близко расположен-ных частиц, вследствие чего даже в отсутствие внешнего магнитного поля (при достаточно низких температурах) может появиться эффект самопроизвольной ориентации магнитных моментов.  [c.150]

Следовательно, при низкой температуре изменение температуры может быть велико обратно пропорционально четвертой степени температуры. Однако в соответствии с третьим началом термодинамики при температуре, близкой с О К, х перестает зависеть от температуры и магнитокалорический эффект исчезает. Предельно низкие температуры, которые можно получить методом адиабатного размагничивания парамагнитных солей, определяются силами взаимодействия между электронными спинами (диполь-дипольного, обменного и т. д.). Как только температура тела будет настолько понижена, что под действием сил взаимодействия возникнет упорядочение в расположении элементарных магнетиков, метод адиабатного размагничивания перестанет действовать. В настоящее время получена предельно низкая для этого метода температура 0,001 К. Вообще, чем более низкую температуру надо получить, тем более слабые взаимодействия необходимо использовать в рабочем веществе. Поэтому другой путь в приближении к О К лежит через использование ядерного магнетизма. В этом случае силы взаимодействия будут проявляться лишь при 10" К. Этим методом удается получить спиновые температуры порядка 10 К .  [c.195]


Состояния с отрицательной абсолютной температурой могут наблюдаться только в таких системах, в которых внутренняя энергия и не может принимать значений, больших некоторой конечной величины (Уд и меньших некоторой конечной величины (Уд, т. е. ограничена значениями Уд и У/д. Упомянутое выше состояние ядерных спинов некоторых парамагнитных тел во внешнем магнитном поле, когда спины в основном ориентированы против магнитного поля, представляет собой неравновесное в целом (но метастабильное или квазиравновесное по отношению к достаточно малому промежутку времени) состояние с отрицательной абсолютной температурой, а с ориентацией по полю — равновесное состояние с положительной абсолютной температурой.  [c.92]

Парамагнитное твердое тело (например, кристаллы сернокислого гадолиния), магнитная проницаемость которого меняется с температурой поза-  [c.178]

Так как у парамагнитных тел Р (>0, а при выключении магнитного поля йВ < о, то йТ << 0, т. е, адиабатическое размагничивание сопровождается понижением температуры. При низких температурах теплоемкость кристалла Су Т , поэтому 57 со МТ йВ, т. е. охлаждение является весьма значительным.  [c.179]

Фазовым переходом второго рода является переход ферромагнитных тел в парамагнитное состояние в точке Кюри и переход некоторых металлов и сплавов при низких температурах в сверхпроводящее состояние. В обоих случаях отмечается изменение симметрии тела — в первом случае меняется расположение элементарных магнитных моментов в теле, во втором — изменение симметрии связано с образованием пар свободных валентных электронов в металле.  [c.240]

Так как у парамагнитных тел Р > О, а при выключении магнитного поля dB < О, то йТ < 0. Адиабатическое размагничивание сопровождается значительным понижением температуры (при низких температурах теплоемкость кристалла Су и поэтому dT T dB).  [c.296]

Диамагнитными и парамагнитными свойствами обладают вещества любых состояний (газ, жидкость, твердые тела). Только кристаллические вещества имеют магнитоупорядоченные структуры. В магнитном отношении кристаллы анизотропны, т. е. их свойства неодинаковы в различных кристаллографических направлениях, что определяет наличие осей легкого и трудного намагничивания. Степень анизотропии магнитных свойств зависит от совершенства кристаллической решетки. Кристаллы совершенной структуры (монокристаллы) отличаются большой анизотропией, а поликристал-лические материалы являются изотропными, т. е. их магнитные свойства одинаковы во всех направлениях.  [c.24]

Элементы Рец, Ni, Со, Gd, имеющие - >1,5 — ферромагнитны элементы Fe , Мп, Сг, у которых < 1,5 — парамагнитны. Ферромагнитные тела имеют доменную  [c.62]

По величине и знаку магнитной восприимчивости все тела можно разделить на 3 группы (табл. 11.1) диамагнитные, парамагнитные и ферромагнитные.  [c.286]

Магнитные свойства диамагнитных и парамагнитных тел, У диамагнитных тел I и I < 1, отрицательная и не зависит от напряженности внешнего поля и температуры. Они намагничиваются в направлении, противоположном полю, вследствие чего выталкиваются из областей с более сильным полем.  [c.286]

Парамагнитные вещества используются в качестве рабочих тел в квантовых парамагнитных усилителях и генераторах, принцип работы которых будет рассмотрен в дальнейшем.  [c.293]

Магнитный резонанс получил широкое практическое применение. Электронный парамагнитный резонанс (ЭПР) используется для исследования механизма химических реакций, для изучения влияния ионизирующего излучения на вещество и живые ткани, для исследования электронного состояния твердых тел и во многих других важных областях науки и техники. На явлении ЭПР построены такие важные радиотехнические устройства, как парамагнитные усилители и генераторы, которые будут рассмотрены в гл. 12. Ферромагнитный резонанс нашел применение в технике СВЧ.  [c.306]

Существует и ряд других твердых тел, используемых в качеств ве рабочих веществ в парамагнитных квантовых усилителях различных диапазонов частот.  [c.337]


Магнитные и электрические методы дефектоскопии. Магнитные методы контроля качества продукции применяются для обнаружения поверхностных и скрытых дефектов в материалах, обладающих положительной магнитной восприимчивостью. Магнитные методы дефектоскопии основаны на свойстве металла быстро намагничиваться и размагничиваться или создавать разную магнитную индукцию в местах дефекта. Поэтому наиболее успешно эти методы применяются для ферромагнитных материалов с большой магнитной проницаемостью и менее — для парамагнитных тел, так как в этом случае магнитное насыщение наступает в полях чрезвычайно большой напряженности. Материалы с отрицательной магнитной восприимчивостью не подвергаются магнитным методам контроля.  [c.258]

Адиабатное размагничивание парамагнитных веш,еств аналогично адиабатному расширению газа. Как в том, так и в другом случае работа против внешних сил совершается за счет внутренней энергии системы, и это приводит к понижению температуры тела. Магнито-кало-рический эффект обратимого адиабатного размагничивания парамагнитных кристаллов используется в настоящее время как основной лабораторный метод получения самых низких температур.  [c.227]

Адиабатным размагничиванием парамагнитных тел удалось достигнуть понижения температуры самого тела до 0,0044° К. Применение этого метода для охлаждения других веществ является задачей практически трудной.  [c.228]

Теория обратимого адиабатного изменения магнитного состояния парамагнитного тела  [c.228]

Аналогично возникновению двойного лучепреломления в электрическом поле возможно также и создание искусственной анизотропии под действием магнитного поля. Если анизотропные молекулы обладают дополнительно постоянным мдгнитным моментом (парамагнитное тело), подобно тому, как молекулы, будучи анизотропными, обладают постоянным электрическим моментом, то их поведение под действием магнитного поля должно представлять аналогию с явлением, наблюдаемым в электрическом поле. В отсутствие внешнего магнитного поля хаотическое расположение молекул обеспечивает макроскопическую изотропию среды, несмотря на анизотропию отдельных молекул. Наложение достаточно сильного магнитного поля, воздействующего на магнитные моменты молекул, ориентирует их определенным образом относительно этого внешнего поля. Ориентация анизотропных молекул сообщает всей среде свойства анизотропии, которые можно наблюдать обычным способом. Действительно, удалось обнаружить возникковенпе двойного лучепреломления под действием сильного магнитного поля, направлен-  [c.536]

Перейдем теперь от изолированной парамагнитной частицы к макроскопическому телу, содержащему большое число таких частиц. Здесь очень важным является не только то, что имеется много магнитных моментов, но и то, что они взаи1Модействуют между собой и с окружением. Эти взаимодействия приводят к установлению термодинамического равновесия, если оно в силу каких-либо причин окажется нарушенным. Внутренние взаимодействия в парамагнетике влияют также на вид энергетического спектра,  [c.351]

У меди имеется один 4з-электрон и целиком задолненная Зб-оболочка (10 электронов). Большие орбиты Зб-электронов и значительное их число делают диамагнетизм замкнутых оболочек меди преобладающим над парамагнетизмом свободного 48-электрона. Если же энергетические зоны целиком заполнены или совершенно пусты (изоляторы), то твердое тело также обладает диамагнитными свойствами. Полупроводники были бы диамагнитными, если бы не малые парамагнитные составляющие восприимчивости, обусловленные свободными электронами.  [c.150]

Следовательно, при низкой температуре изменение температуры может быть велико обратно пропорционально четвертой степени температуры. Однако в соответствии с третьим началом термодинамики при температуре, близкой к О К, перестает зависеть от температуры и магнитокалорический эффект исчезает. Предельно низкие темпертуры, которые можно получить методом адиабатного размагничивания парамагнитных солей, определяются силами.взаимодействия между электронными спинами (ди-поль-дипольного, обменного и т. д.). Как только температура тела будет настолько понижена, что под действием сил взаимодействия возникнет упорядочение в расположении элементарных магнетиков, метод адиабатного размагничивания перестанет действовать.  [c.133]

Парамагнитное твердое тело (например, кристаллы сернокислого гадолиния), магнитная проницаемость которого изменяется с температурой ио закону = Цо + р/7 где Р > О, изотермически пама И1 чиваегся при температуре жидкого гелия, затем Mai iimr.oe поле адиабатически выключается, и температура падае..  [c.295]

При низких температурах все спины параллельны, что и обусловливает магнитное насыщение. С увеличением температуры, вследствие возрастания теплового движения атомов и, таким образом, уменьшения степени упорядочения направлений спинов электронов в соседних атомах, напряженность магнитного поля ферромагнетиков, созданного сильным внешним магнитным полем, уменьшается. Таким образом уменьшаются магнитная восприимичи-вость, проницаемость, намагниченность при насыщении. Вблизи точки Кюри ферромагнетизм исчезает вначале медленно, а затем быстро, пока не достигается температура Кюри, и материал становится парамагнитным. Влияние температуры на ферромагнитные свойства железа, никеля и кобальта приведено на рис. 44, где по оси ординат отложено отношение намагниченности при температуре Т к намагниченности при абсолютном нуле, по оси абсцисс — отношение абсолютной температуры к температуре Кюри. Зависимость магнитного насыщения от температуры в указанных координатах описывается одной и той же для рассматриваемых ферромагнитных тел (Fe, Ni, Со) кривой. Температура Кюри равна Тбв"" С для железа, 360° С для никеля, 1150° С для кобальта и 16° С для гадолиния. Температура Кюри в действи-  [c.65]


Иные условия имеют место для систем, в которых возможные значения внутренней энергии ограничены между некоторыми минимальными и максимальными значениями, т. е. /мии<С/< /макс. В этом случае W ни при каких значениях U не обращается в бесконечность, и поэтому возможны как положительные, так и отрицательные значения абсолютной температуры. Таким образом, равновесные состояния с отрицательной абсолютной температурой могут наблюдаться только в таких системах,, в которых внутренняя энергия не может принимать значений, больших некоторой конечной величины. Упомянутое выше состояние ядерных спинов некоторых парамагнитных тел во внешнем магнитном поле, когда спины в основном 0 риентир0ваны против, магнитного поля, представляет собой квазиравновеоное состояние с отрицательной абсолютной температурой, а с ориентацией по полю — равновесное состояние с положительной абсолютной температурой.  [c.106]

Магнитные свойства материалов связаны с вращением электронов в атомных ядрах. Электро1ь вращающиеся в атоме, являются элементарными магнитиками данного тела. В парамагнитных телах внешнее магнитное поле усиливается внутренними элементарными магнитиками, в диамагнитных — ослабляется. Намагниченность данного вещества под влиянием внешнего магнитного поля можно характеризовать уравнением  [c.288]

Магнитные свойства и строение вещества. Как известно электрон обладает спиновым и орбитальным магнитными моментами. Геометрически складываясь моменты электронов создают результирующий магнитный момент атома М. Суммарный магнитный момент в единице объема, именуемый намагниченностью J, когда вещество не было намагничено и внешнее поле отсутствует, равняется нулю. Под воздействием магнитного иоля со средней напряженностью внутри тела, равной Н, намагниченность J = %Н, где х— магнитная восприимчивость. Намагниченность определяет величину магнитной индукции В = В + + %Н. Магнитные свойства вещества характеризует также относительная магнитная проницаемость х = 1 -10 гн м — магнитная постоянная вакуума. В зависимости от величины и знака магнитной восприимчивости вещества могут быть диамагнитные (Х<0), парамагнитные и ферромагнитные (х>>0). Рассмотрим две последние группы веществ. В парамагнитных веществах у атомов имеются магнитные моменты, однако иод влиянием теплового движения эти моменты располагаются статистически беспорядочно вдоль магнитного поля удается ориентировать лишь примерно одну десятитысячную процента всех спинов. В результате магнитная восприимчивость X мало отличается от нуля, а магнитная проницаемость парамагнитных материалов немногим больше единицы. К парамагнитным принадлежат некоторые переходные металлы, а также щелочные и щелочно-земельные металлы. Ферромагнитные материалы обладают весьма большой магнитной восприимчивостью, может достигать значений порядка 10 , после снятия поля сохраняется остаточная намагниченность. Ферромагнитные свойства при нагревании наблюдаются лишь до некоторой температуры 0, отвечающей точке Кюри — переходу нз ферромагнитного в парамагнитное состояние. Значение 0 для железа 769° С, для кобальта 1120° С, для никеля 358 С. При температурах Т G в отсутствие внешнего поля ферромагнетик состоит из микроскопических областей — доменов, самопроиз-  [c.226]

У парамагнетиков также i > < 1, но положительная. Они намагничиваются в направлении поля и втягиваются в области с максимальным Н. На рис. 11.1. а показана зависимость намагниченности /щ от Я для диа-и парамагнетиков. В обоих случаях Я, что свидетельствует о независимости V. от я. Однако у парамагнетиков такая зависимость наблюдается лишь в относительно слабых полях н при высоких температурах в сильных полях и при низких температурах (Я) асимптотически приближается к предельному значению Jсоответствуюш,ему магнитному насыщению парамагнетиков (рис. 11.1, 6). Кроме того, х у парамагнитных тел зависит от температуры  [c.286]

Тела, атомы которых не обладают постоянным магнитным моментом, являются диамагнитными,Тела, атомы которых обладают постоянным магнитным моментом, могут быть парамагнитными, ферромагнитными, антиферромагнит-ными и ферримагнитными. Именно, если взаимодействие между магнитнымн моментами атомов равно нулю или очень мало, то тело будет парамагнит-  [c.290]

В ферромагнетиках, в отличие от парамагнитных тел, между неспаренными электронами внутренних недостроенных оболочек имеет место сильное обменное взаимодействие, вызывающее упорядоченное расположение их СПИновых магнитных моментов и спонтанное намагничивание доменов до насыщения Это приводит к существенным особенностям в протекании резонансного поглощения высокочастотной энергии ферромагнетиками, которое называют ферромагнитным резонансом. Физическая суть его состоит е том, что под действием внешнего магнитного поля Нд, намагничивающего ферромагнетик до насыщения, полный магнитный момент образца М начинает прецессировать вокруг этого поля с ларморовой частотой ojl, зависящей от Яо (11.25). Если на такой образец наложить высокочастотное электромагнитное поле, перпендикулярное Яо, и изменять его частоту ш, то при ю = i. наступает резкое (резонансное) усиление поглощения энергии поля. Резонанс наблюдается на частотах порядка 20-Г-30 ГГц в полях 4- 10 -А/м (л 5000 Э). Поглощение при этом на несколько порядкоз выше, чем при парамагнитном резонансе, так как магнитная восприимчивость ферромагнетиков (а следовательно, и магнитный момент насыщения М) у них много выше, чем у парамагнетиков. Кроме того, так как в формировании эффективного магнитного поля в ферромагнетиках участвуют размагничивающий фактор и поле магнитной анизотропии, то частота ферромагнитного резонанса оказывается зависящей от формы образца.и,направления поля относительно осей легкого намагничивания.  [c.306]

Интересным н важным является вопрос о тепловом расширении ферромагнитных тел. В гл. 4 было показано, что расширение твердых тел при нагревании обусловлено ангармоническим характером колебаний частиц около положений равновесия. У диамагнитных и парамагнитных твердых тел это является единственной причиной их расширения. Обозначим КТР, обусловленный ангармонизмом, через В ферромагнитных материалах дело обстоит сложнее. Изменение температуры приводит к изменению их намагниченности и тем самым к изменению их размеров. Это явление было названо Акуловым термостракцией. Обозначим КТР, обусловленный термострикцей, через а . Полный КТР ферромагнетика равен а = ад + а ,. КТР всегда положителен, КТР Кц, мом ет быть и положительным, и отрицательным. Поэтому результирующий КТР ферромагнетиков может быть положительным, равным нулю я отрицательным. В частности, к ферромагнитным материалам, имеющим отрицательную ферромагнитную составляющую КТР ( м). относятся инвар-ные сплавы. На рис. 11.31 приведена зависимость КТР железоникелевых и железоплатиновых сплавов от их состава. У сплавов, содержащих 36% никеля, КТР примерно в 10 раз меньше, чем у чистого никеля и железа у сплава, содержащего 56% пластины, КТР отрицателен.  [c.318]

Используются различные способы получения инверсной заселенности рабочих уровней. Наиболее широкое применение получили парамагнитные квантовые усилители, основанные на явлении парамагнитного резонанса в твердых телах, описанном в 11.7. В качестве рабочего вещества в этих усилителях используются диамагнитные кристаллы, содержащие небольшие количества парамагнитной примеси. К таким веществам относится, в частности, рубин представляющий собой окись алюминия (AI2O3), содержащий при-  [c.336]


Все без исключения тела являются в различной степени магнитоактивными. Еще в 1845 г. М. Фарадей установил, что по своим магнитным свойствам все тела можно разделить на диамагнитные и парамагнитные. В настоящее время из группы парамагнетиков выделяют особую подгруппу— ферромагнетиков. По Фарадею, опредв ляющим критерием для отнесения вещества к той или иной группе служит его поведение в сильном неоднородном магнитном поле. Помещенный в такое поле пара-  [c.128]


Смотреть страницы где упоминается термин Тело парамагнитное : [c.315]    [c.35]    [c.178]    [c.66]    [c.85]    [c.359]    [c.412]    [c.233]    [c.239]    [c.44]   
Технический справочник железнодорожника Том 1 (1951) -- [ c.481 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте