Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усталость высокотемпературная испытания

Рис. 6.6. Система телеметрической передачи изображения при высокотемпературных испытаниях на малоцикловую усталость Рис. 6.6. <a href="/info/539309">Система телеметрической</a> <a href="/info/172538">передачи изображения</a> при высокотемпературных испытаниях на малоцикловую усталость

Не все конструкции обычных машин для испытаний на усталость при комнатной температуре могут быть приспособлены для высокотемпературных испытаний, и поэтому для этой цели конструируют специальные установки, подавляющее большинство которых работает по схеме изгибных напряжений. Предпочтение,  [c.260]

При высоких температурах, когда имеет место газовая коррозия (а при быстро вращающемся образце этот процесс идет еще интенсивнее за счет эрозионного уноса с поверхности защитной окисной пленки), такое уменьшение усталостной прочности, вызываемое активны.м взаимодействием среды, в которой находится образец, должно обязательно учитываться. Отсюда понятно стремление проводить высокотемпературные испытания на усталость в нейтральных газовых средах.  [c.283]

Это относится только к испытаниям при комнатной температуре. В условиях высокотемпературных испытаний на усталость число циклов, составляющих базу испытаний, значительно увеличивается.  [c.152]

Высокотемпературные испытания в сложнонапряженном состоянии (усталость + растяжение) были проведены на машине оригинальной конструкции [66]. Эти испытания показали (табл. 30), что  [c.855]

Рис. 51. Результаты высокотемпературных испытаний на усталость и на ползучесть сплава инконель-Х Рис. 51. Результаты высокотемпературных испытаний на усталость и на <a href="/info/57701">ползучесть сплава</a> инконель-Х
Анализ структуры, свойств и характера разрушения диска, а также моделирование разрушения испытаниями на малоцикловую усталость позволили установить, что разрушение диска произошло в результате действия неучтенных расчетом высоких циклических напряжений в сочетании с действием статических нагрузок в зоне концентратора грибка диска в процессе эксплуатации, которые привели к разрушению под действием ползучести и высокотемпературной малоцикловой усталости.  [c.48]

Рис. 63. Приспособление для испытания плоских образцов на термическую усталость в высокотемпературной вакуумной установке а) и схема крепления образца (б) Рис. 63. Приспособление для <a href="/info/128772">испытания плоских образцов</a> на <a href="/info/34011">термическую усталость</a> в высокотемпературной <a href="/info/706438">вакуумной установке</a> а) и схема крепления образца (б)

Лозинский М. Г.. Романов А. Н. Установка ИМАШ-10 для микроструктурного изучения кинетики разрушения металлов и сплавов в процессе испытания на усталость при знакопеременном изгибе и высокотемпературном нагреве в вакууме. М., изд. НИИМаш,  [c.299]

Для анализа условий малоциклового разрушения конструктивного элемента используют кривые усталости е МЛ, приведенные на рис. 3.17. С учетом кривых 2 и 4 (см. рис. 3.13) данные испытаний на малоцикловую усталость (точки о и V на рис. 3.17) для разных зон разрушения модели образуют единую кривую 2 малоцикловой усталости. Это свидетельствует о достаточной точности принятого метода расчета упругопластических деформаций с помощью МКЭ в условиях высокотемпературного малоциклового нагружения.  [c.148]

Поковки для больших высокотемпературных роторов должны обладать максимально высоким пределом ползучести, сочетающимся с высокой пластичностью. Эти свойства достигаются контролируемыми выделениями карбида ванадия в бейнитной структуре 1 % Сг, Мо, V стали (3]. В некоторых случаях из-за сложности термообработки свойства металла на поверхности и в сердце-вине оказываются различными. Ползучесть типичной роторной стали за 10 ч при 500° С при напряжении 46 МН/м деформация 0,10%, а при напряжении 108 МН/м деформация 1%. Сопротивление усталости этого материала в зависимости от продолжительности испытаний показано на рис. 15.6 [2].  [c.212]

Отмечается значительное влияние типа цикла нагружения и нагрева на сопротивление малоцикловой усталости. В условиях жесткого нагружения и режима испытания, когда максимальная деформация растяжения достигается в момент разогрева до максимальной температуры цикла, существенно увеличиваются повреждения материала. Долговечность вследствие большого повреждающего эффекта снижается в 10 раз по сравнению с режимом испытания, Когда максимальная деформация сжатия соответствует максимальной температуре цикла (рис. 2.5, кривые 2 и 4). Кривая малоцикловой усталости (5) при постоянной температуре, соответствующей максимальной температуре цикла 860° С, располагается значительно правее кривой 4. Это, так же как и при неизотермических испытаниях, можно объяснить эффектом залечивания повреждений в высокотемпературной части цикла на этапе сжатия.  [c.50]

Высокотемпературная малоцикловая усталость Высокотемпературная малоцикловая усталость наблюдается при высоких напряжении и деформации, когда число циклов до повреждения Mf составляет <10. Она отличается от случая, когда нагружение проводится при низкой частоте приложения напряжения или деформации, и от случая нагружения с заданной деформацией. Часто проводят испытания на усталость с заданной деформацией при знакопеременном треугольном цикле нагружения. Это обусловлено тем, что термическая усталость, вызывающая серьезные проблемы в реальных деталях Машин и элементах конструкций, является усталостью с заданной деформацией. Кроме того, даже данные, полученные при высокой температуре, соответствуют уравнению Мэнсона — Коффина и получаемые  [c.14]

Уравнение (1.12) получено из (1.11) в предположении, что при разрушении в условиях монотонного увеличения нагрузки Л р = = /4, а Абпл = р, где р — истинное удлинение при разрушении в случае уравнения (1.13) предполагается V2, Абпл == Коффином в работах [176, 177] для учета влияния временных эффектов, имеющих место при высокотемпературных испытаниях на малоцикловую усталость, было предложено уравнение  [c.22]

Шишкова А. П., Высокотемпературные испытания на усталость при одном миллиарде циклов, ЦНИИТМАШ, кн. 85, Вопросы конструкционной прочности стали , Машгиз, 1957.  [c.761]

Способ исследования термомеханической усталости заключается в том, что с целью приближения условий испытания к эксплуатационным в качестве высокотемпературного нагревателя используют расплав металла, который дозированно подают под давлением в зону исследуемого участка образца. Затем образец выдерживают в течение времени, достаточного для кристаллизации расплава.  [c.271]

Обнадеживающие результаты испытаний на высокотемпературную усталость эвтектики NiaNb—NisAl получены Томпсонам и др. [59]. Усталостные свойства эвтектического сплава с направленной микроструктурой при 1144 К оказались выше свойств промышленного сплава В-1900 при испытании образцов с надрезом и без него. Следует отметить, что эвтектика окисляется сильнее, чем сплав В-1900, и тем не. менее свойства ее были лучше. Разрушение проходило, в основном, через пластины, подобно усталостному разрушению сплава Ni—NisNb при комнатной температуре, хотя иногда в процессе иопытания наблюдалось расслаивание по границам пластин.  [c.380]


Усталость при высоких температурах представляет собой сложный процесс, в котором определенную роль играют явления ползучести и повреждения, характерные для длительного статического высокотемпературного нагружения [97, 111]. Этим обстоятельством в значительной степени объясняется отсутствие физического предела выносливости для материалов, испытываемых при высоких температурах. Высокотемпературную усталость можно считать одной из разновидностей коррозионной усталости. Тем не менее целесообразно особо рассмотреть этот вид нагружения, поскольку при высокотемпературной усталости в материале происходит ряд специфических процессов, прямо не связанных с коррозией. Так, при испытании образцов из литейного никель-хромового сплава ЖС6К при 900°С наблюдалось резкое снижение значений микротвердости от головок к рабочей зоне образцов, что можно объяснить весьма существенным разу-142  [c.142]

Вследствие образования множественных поверхностных очагов макростроение изломов круглых образцов, испытанных на термоусталость, отличается от макростроения усталостных изломов подобных образцов таким образом, как это схематично показано на рис. 136. В пределах усталостной зоны обнаруживается характерный усталостный рисунок в виде складчатости, нерезко очерченных расходящихся от очагов рубчиков и слабо выраженных концентрических колец, представляющих собой узкие полосы с более крупной, чем на соседних участках, шероховатостью. По мере продвижения трещины шероховатость в усталостной зоне постепенно увеличивается, зон с резко очерченными границами, т. е. резкого изменения характера излома не наблюдается. Эта черта отличает рассматриваемые изломы от высокотемпературных чистоусталостных, на которых, как правило, резко выделяется начальная зона в форме глазка. Особым признаком излома при термоциклическом нагружении, отличающим его от излома механической усталости, является также большая сглаженность, нерезкость, некоторая оплавленность рельефа. Для алюминиевых сплавов этот макроскопический признак вида излома может быть основным, так как в остальном излом мало отличается от обычных усталостных (рис. 137).  [c.168]

Сравнивая полученные в настоящей работе экспериментальные данные с основными закономерностями развития повреждений в условиях статического и циклического видов нагружения, природу развития несплошностей в условиях испытаний на термическую усталость можно представить следующим образом. В процессе испытания на термическую усталость, а также во время изотермической выдержки при верхней температуре цикла развивается межзеренное проскальзывание. Следует полагать, что при накоплении определенного числа циклов величина смещения зерен относительно друг друга достигает критического значения, при котором образуются субмикроскопические несплош-ности на межзеренных границах. Если такое состояние границы возникает в условиях высокотемпературного растяжения, то приложенные нормальные растягивающие напряжения обеспечивают их быстрое раскрытие в клиновидные трещины, наб.людаемые в оптический микроскоп. Однако в условиях термоциклирования металл в диапазоне температур Тщах испытывает снижающие напряжения, что стабилизирует указанную структуру границ зерен, несмотря на продолжающийся процесс межзеренного про-  [c.49]

Описана установка для испытаний металлов на усталость, модернизированная с целью осуществления на ней высокотемпературных исследований при двухчастотных и программных режимах нагружения с низкочастотным деформированием в уируго-пластической области.  [c.161]

По техническому заданию лаборатории высокотемпературной металлографии Института машиноведения Фрунзенский зафд контрольно-измерительных приборов осуществил разработку проектно-технической документации и в 1968 г. начал серийный выпуск установки ИМАШ-10-68, созданной на базе аппаратуры ИМАШ-ЮМ и имеющей близкие к ней характеристики [49, с. 25—32]. Эта установка предназ1йачена для исследования микроструктуры образца с одновременной регистрацией изменения его электросопротивления в процессе испытания на усталость металлов и сплавов при знакопеременном изгибе в условиях нагрева.  [c.143]

Рис. 1. Влияние охлаждения патрона А — на стабилизацию резонансных частот (сгглошные кривые), напряжений (штрихпунктир) В — на распределение напряжений, амплитуд колебаний г/ и температур t по длине литого образца из сплава ВЖЛ12У, моделирующего стенку пера лопатки турбины, при высокотемпературных технологических испытаниях на усталость. Рис. 1. <a href="/info/444780">Влияние охлаждения</a> патрона А — на стабилизацию <a href="/info/8934">резонансных частот</a> (сгглошные кривые), напряжений (штрихпунктир) В — на <a href="/info/166564">распределение напряжений</a>, <a href="/info/6145">амплитуд колебаний</a> г/ и температур t по длине литого образца из сплава ВЖЛ12У, моделирующего стенку <a href="/info/371601">пера лопатки</a> турбины, при высокотемпературных <a href="/info/138386">технологических испытаниях</a> на усталость.
Некоторое подобие реальным режимам нагружения воспроизводится опытами на термическую усталость с выдержками в высокотемпературной части цикла на установках Коффина [1—9] такие же режимы нагружения могут быть приближенно оценены опытами на изотермических малоцикловых y TanoBitax без следящей системы нагрунсения [10]. Существенная нестационарность процесса упругопластического деформирования при таких испытаниях связана главным образом с изменением соотношения жесткости системы машина — образец в результате кинетики свойств материала, перераспределения температурных полей как по циклам, так и во времени. В связи с этим фактическая величина деформаций существенно нестационарна и поэтому особое внимание при оценке условий разрушения должно быть уделено определению действительной величины циклической деформации [11].  [c.86]

Испытание материалов на усталость при высоких температурах проводили в специальных высокотемпературных электропечах сопротивления. Печи трехсекционные с нагревательными элементами из модифицированного сплава ЭИ626 позволяют нагревать образцы до 1200° С и обеспечивают равномерное распределение температурного поля по всей поверхности испытуемого образца  [c.175]


Расчетная оценка малоцикловой долговечносга. На базе полученной информации о циклических деформаций в опасной точке детали и кривых малоцикловой усталости оценим долговечность телескопического кольца, используя деформационно- кинетический критерий прочности при постоянных температурах [см. соотношение (1.3)]. Разрушения детали (см. рис. 3.2) в условиях эксплуатации, а также модели при стендовых испытаниях в условиях высокотемпературного малоциклового нагружения имеют преимущественно усталостный характер (наличие сетки мелких трещин, инициирующих магистральное разрушение, без признаков накопления односторонних деформаций), поэтому расчетное критериальное уравнение, описьшающее предельное состояние материала, обусловленное накоплением усталостных повреждений, принимаем в виде  [c.144]

Периодическое смачивание водой нагретых до 200°С образцов из стали 13Х12Н2МВФБА более чем на 20 % снижает ее условный предел выносливости. Дополнительное уменьшение предела выносливости при смачивании нагретых образцов объясняется образованием трещин по всей периферийной области. У стали, подверженной отпуску после закалки при 600 и 700°С, при температуре испытания 400°С предел выносливости снижается с 620 МПа соответственно до 500 и 440 МПа. Смачивание образцов, нагретых до 400°С, обусловило дополнительное снижение условного предела выносливости стали, подверженной отпуску при 600°С, на 10 %, а при 700°С — на 15%. При температуре испытания 400°С с периодическим смачиванием водой образцы имеют хрупкий многопластный излом в периферийной части в отличие от изломов образцов, полученных при высокотемпературном (400°С) испытании в воздухе. Зона зарождения трещины в воздухе представляет собой типичную картину усталостного разрушения. На отдельных фасетках просматриваются специфические для усталости металла бороздки, расстояние между которыми составляет до 0,01 мкм.  [c.108]

Для малоциклового нагружения, при котором величины действующих нагрузок существенно выше, схема упрочнения — разупрочнения при двухуровневом нагружении также справедлива, что показано, например, в [6]. Однако в ряде случаев малоцикловой высокотемпературной усталости суммарное повреждение оказывается большим, чем это следует из линейного закона. В табл. 4.7 показаны результаты таких испытаний для жаропрочного никелевого сплава ХН56ВМКЮ. Размах деформаций изменялся в блоке нагружения так = 1,75%, = 2,61%,  [c.99]

Глубина слоя для деталей, работающих в условиях переменных нагрузок (валы, оси и другие детали), в целях повышения предела усталости не должна превосходить 5—10% от величины радиуса деталей, а твердость должна находиться в пределах 700—800 кГ мм . При повышении глубины слоя сверх указанных пределов возможен отрицательный эффект упрочнения. По данным ЦНИИ МПС после высокотемпературного газового цианирования при увеличении глубины слоя с 1,0 до 1,7 мм (испытание производилось на образцах диаметром 15 мм) предел усталости стали Ст. 3 уменьшился с 49,6 до 39,7 кГ1мм . Таким образом, от  [c.256]

Заметная временная зависимость сопротивления термической усталости в интервале средних температур связана с особенностями протекания высокотемпературной пластической деформации [2]. При меньших температурах временная зависимостиь проявляется слабо вследствие незначительной скорости процессов ползучести и релаксации напряжений. При больших температурах термические напряжения очень быстро полностью релаксируют и дальнейшая выдержка становится несущественной, так как образец уже практически разгружен. Кроме того, в опасном интервале температур характеристики длительной пластичности металла, как правило, снижены в наибольшей степени по сравнению с характеристиками кратковременных испытаний. Следует отметить, что последнее положение является дискуссионным.  [c.40]

Определенным подбором горячей деформации и термической обработки в работе [14] были получены различные структуры сплавов, которые оценивались по шкалам АМТУ 518—69 (балл макро- и микроструктуры). Усталостные образцы диаметром рабочей части 5,0—7,5 мм вырезались как из прессованных или кованых прутков, так и из штампованных лопаток. Испытание гладких и надрезанных ( = 1,89) образцов велось при чистом круговом изгибе. Основные результаты испытаний при комнатной температуре приведены в табл. 37. Данные табл. 37 показывают, что огрубление макро- и микроструктуры (увеличение балльности) заметно снижает усталостную прочность титановых сплавов, при этом самостоятельное значение имеет и макроструктура и микроструктура. Более чувствительным к структуре материалом оказался сплав ВТЗ-1. Характерно, что испытания образцов, вырезанных из штампованных лопаток сплава ВТ8, которые подвергались высокотемпературной термомеханической обработке (ВТМО), показали предел усталости 73—77 кгс/мм - против 65 кгс/мм без ВТМО. Очевидно, ВТМО дает большую структурную однородность, Повышаюш,ую предел усталости. Близкие к изложенным результатам получены данные для сплавов ВТ8 и ВТ9.  [c.145]


Смотреть страницы где упоминается термин Усталость высокотемпературная испытания : [c.242]    [c.85]    [c.125]    [c.373]    [c.46]    [c.606]    [c.131]    [c.48]    [c.380]    [c.396]    [c.274]    [c.17]    [c.18]    [c.273]    [c.20]    [c.365]    [c.276]   
Теория высокотемпературной прочности материалов (1986) -- [ c.228 ]



ПОИСК



Высокотемпературная ТЦО

Испытание усталость

Усталость

Усталость высокотемпературная

Усталость — Испытания усталости



© 2025 Mash-xxl.info Реклама на сайте