Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Силициды титана

В серии опытов по определению оптимального режима горячего прессования титана было установлено, что он хорошо прессуется при температурах, не превышающих 1300° С. Известно также, что силицид титана обладает хорошей жаростойкостью. Для увеличения механической прочности покрытия [3] порошок титана смешивался с порошком молибдена в различных соотношениях.  [c.24]

Силицирование титана из паровой фазы можно осуществить за счет значительного увеличения температуры кремния по сравнению с температурой силицированного титана. Величина температурного перепада между кремнием и титаном должна быть таковой, чтобы равновесное давление кремния было больше давления диссоциации силицидов титана. Силицирование титана из паровой фазы можно осуществить также, если предварительно на поверхность титана нанести тонкую (10—20 мкм) пленку молибдена, вольфрама или другого тугоплавкого металла.  [c.40]


Рис. 3. Кинетика окисления силицидов титана при различных температурах. Рис. 3. <a href="/info/47956">Кинетика окисления</a> силицидов титана при различных температурах.
Жаростойкость силицидов титана в области температур 100— 1100° С превышает жаростойкость силицидов молибдена в этом температурном интервале. Силициды титана в отличие от силицидов молибдена и вольфрама не подвержены катастрофическому низкотемпературному разрушению.  [c.41]

Силициды титана не подвержены также точечной коррозии. Жаростойкость силицидов титана обусловлена образованием на поверхности защитной пленки, которая после длительной выдержки силицидов титана в атмосфере воздуха или кислорода при температурах 800—1400 ° С обогащается ТЮа.  [c.41]

Силициды титана могут успешно применяться для защиты графита, ниобия и других материалов. Испытания силицидов титана (толщиной 200 мкм) показали, что на ниобии средняя их жаростойкость при 1450° С составляет 70 ч, на графите—800 ч. Весьма перспективно применение силицидов титана для покрытия сталей.  [c.41]

Силициды титана можно получать активированным методом. Важнейшую роль в этом случае играет активатор процесса сили-цирования, которым в данном случае являются фторсодержащие соединения. Роль активатора заключается в переносе кремния к реакционной поверхности, что позволяет производить процесс сили-цирования при более низких температурах по сравнению с вакуумным силицированием.  [c.41]

Как известно, силициды металлов при комнатной температуре хрупкие и получение пластичных силицидов титана открывает принципиальную возможность улучшения механических свойств таких материалов. Эксперименты показывают, что сравнительно высокую пластичность имеют силициды, полученные в условиях, когда реализуются возможности для их аномально большой скорости образования.  [c.41]

Таким образом, сочетание у силицидов титана наряду с высокой антикоррозионной стойкостью значительной пластичности и, как следствие этого, отсутствие на этих материалах и покрытиях явления чумы и точечной коррозии делают такие покрытия уникальными для защиты металлов от воздушной коррозии до 1400° С,  [c.41]

Расчеты позволяют также предположить, что в переходном слое образуются силициды титана  [c.135]

В качестве токопроводящих составов могут использоваться фос-фатные композиции на основе порошков металлов, силицидов вольфрама, молибдена, боридов титана, хрома [11] или сочетания портландского цемента с графитом [12]. Токопроводящие составы характеризуются р=0.01—0.06 Ом-см.  [c.12]


Силицирование образцов производилось в вакууме 5-10 торр при температуре 1250° С в течение 27 ч. При таком режиме толщина силицидного покрытия составляла от 60 до 200 мкм для разных образцов. Слои силицидного покрытия имеют различную микротвердость на шлифах у светлой области она составляет 800—1000, у темной 1500 кгс/мм . Граница с металлом неровная, что свидетельствует о различной скорости роста силицидов молибдена и титана.  [c.25]

В работах [1,2] описан вакуумный метод силицирования тугоплавких металлов в порошкообразном кремнии. Образование силицидов металла происходит в результате соприкосновения металлической поверхности с твердой или паровой фазой кремния. Замечено, что вакуумное силицирование титана в порошке кремния протекает иначе, чем тугоплавких металлов — Мо, Д , Nb и др.  [c.39]

Механические испытания образцов силицированного титана обнаружили их высокую пластичность, значительно превосходящую пластичность силицидов молибдена, вольфрама и других металлов. I  [c.41]

Соединения тугоплавких металлов наряду с высокой температурой плавления и твердостью обладают коррозионной устойчивостью во многих агрессивных средах. В качестве коррози-онно-устойчивых материалов и покрытий используются соединения титана, тантала, ниобия, а также карбиды, силициды, бориды и нитриды. Карбид титана устойчив в концентрированной соляной кислоте, а карбиды бора и кремния отличаются высокой коррозионной устойчивостью во многих средах.  [c.185]

Третья категория компонентов - фрикционные добавки, обеспечивающие порошковому материалу требуемый коэффициент трения и оптимальный уровень зацепления с рабочей поверхностью контртела. Такие добавки должны иметь высокие температуру плавления и теплоту диссоциации, не претерпевать полиморфных превращений в заданном интервале температур, не взаимодействовать с другими компонентами материала и с защитной средой при спекании, быть достаточно прочными и твердыми, хорошо сцепляться с металлической основой. Поэтому более широко в качестве фрикционных добавок используют оксиды кремния, алюминия, железа, магния, марганца, циркония, хрома, титана и др., некоторые карбиды (кремния, бора или вольфрама), силициды (железа и молибдена), или бориды (редких металлов и др.). К материалам на бронзовой основе в качестве фрикционного компонента добавляют железо, в том числе в виде чугунной крошки, вольфрам, хром, молибден и некоторые другие. Эффективно. Введение в состав порошкового фрикционного материала некоторых интерметаллидов, например алюминия и титана.  [c.61]

Из силицидов более широко применяют дисилициды молибдена, вольфрама и титана благодаря исключительной окалиностойкости их используют в качестве материалов для нагревателей, работающих в воздушной среде в интервале 1300 -1700 °С.  [c.162]

Жаростойкий твердый компонент может быть выбран из следующих веществ или их смесей карбидов вольфрама, кремния, ванадия, титана, бора, хрома и молибдена нитридов -кремния, бора и титана боридов хрома, вольфрама, молибдена, тантала и ванадия силицидов бора, молибдена, ниобия.  [c.49]

Продуктом взаимодействия при 1000—1150° С титана с эмалью на границе металл—покрытие являются силициды.  [c.134]

Высокая чистота потребовалась в последнее время не только для металлов. Для применения в области высоких температур широко используют в настоящее время силициды, карбиды, бориды таких металлов, как тантал, вольфрам, ниобий и др. Так, в литературе указывается, что для изготовления различного рода изделий, например подшипников, работающих при высоких температурах, для производства режущего инструмента и деталей, работающих на износ, применяют борид титана высокой чистоты.  [c.526]

Гальваностатические кривые (рис. 1, а), снятые с компенса дней тока сопротивления по мостовой схеме, характеризующие процесс установления стационарного потенциала титанового электрода в расплаве бесщелочного алюмоборосиликатного матричного стекла при 900° С относительно стационарного Pt-элeк-трода, и убывающие абсолютные значения потенциала свидетельствуют о зависимости процесса от уменьшения окислительного характера атмосферы. Анодную зависимость /=/ (С/) титанового электрода в расплаве стекла-матрицы в атмосфере На (рис. 1, б) определяли в потенциостатическом режиме по методике [2, 3] величину омического падения напряжения измеряли после выключения установившегося тока и вычитали из потенциала электрода. Анодная зависимость указывает на доминирующее течение реакции окисления металла за счет паров воды и газов расплава по сравнению с термодинамически разрешенным [41 восстановлением кремнезема расплава и образованием оксида и силицида титана. Состав окклюдированных газов по результатам исследования газовыделения при 7 =500° С и го-5оо°с=0.26х X10 л -мм рт. ст/см - см) СОа — 20%, На — 30%, 00+ N3 —44%, НаО — 6%. Приводимые нами данные находятся в хорошем соответствии с результатами работы [5].  [c.227]


На основании изучения гетерофазного взаимодействия титана с расплавами стекол системы ЗЮа—А1,0,—В,О,—7пО(СиО) с ПОМОЩЬЮ комплекса электрохимических методов исследования установлено большое влияние состава газовой среды на величину и кинетику установления стационарного потенциала Т1-электрода, электропроводность изученных расплавов. Показано, что доминирующим на первой стадии взаимодействия титана с расплавом стекла-матрицы в нейтральной атмосфере является процесс окисления металла за счет растворенных в расплаве паров воды, дополняемый окислительно-восстановительным взаимодействием с образованием в зоне контакта силицидов титана. Присутствие иона меди в расплаве изменяет характер взаимодействия. Восстановление меди сопровождается образованием купротитанатов вследствии гетеродиффузии в металлический титан и растворением прочих продуктов в расплаве. Методом вращающегося титанового диска изучалась кинетика процесса. Лит. — 9 назв., ил. — 3.  [c.270]

В связи с образованием прочного силицида титана TisSia, увеличение содержания кремния в сплаве до 5—  [c.272]

В процессе производства ферротнтана происходит растворение титана в железе и образование соединений титана с алюминием и кремнием, что способствует развитию реакции восстановления и увеличивает переход титана в сплав. Увеличению перехода титана в сплав способствует также повышение количества алюминия в шихте. Но это приводит также к повышению содержания алюминия в сплаве (рис. 62). Существенное значение для уменьшения отношения Al/Ti в сплаве и увеличения извлечения титана из концентрата может иметь рост содержания кремния в металле. Установлено [10], что значение коэффициента пропорциональности А в соотношении % Ti=k (% А1 + °/о Si) остается постоянной величиной для самых разнообразных содержаний титана, кремния и алюминия в ферротитаие. Поскольку силициды титана являются более прочными, чем его алю-миниды, введение кремния в шихту приводит к связыванию титана в силициды и к сдвигу равновесия в сторону повышенного перехода титана в сплав. Практикой установлено оптимальное отношение Si/Ti = 0,22- 0,24 и Al/Ti = = 0,26- 0,28 в сплаве при выплавке его на ильменитовых концентратах. Оксид титана TiO, являясь довольно сильным основанием, может образовывать соединение с глиноземом, что будет благоприятствовать развитию реакции восстановления в направлении его образования. Для того,  [c.275]

Клейн и др. [14] исследовали несколько покрытий на боре с целью снижения скорости реакции. Сравнение было проведено при 1400° F (760° С) и распространено на реакционные слои толщиной до 40 ООО А, однако отклонений от параболических скоростей роста обнарунгено не было, о чем свидетельствует зависимость толщины реакционной зоны от корня квадратного из времени (рис. 13). Все исследования реакции проводили на нелегированной титановой матрице Ti (40А). Существенных улучшений не было установлено ни при каком покрытии. Имеется важное различие в продуктах реакции. В каждом случае продукт реакции представляет собой, главным образом, диборид титана, за исключением борсика, когда продукты, в основном являясь силицидами титана, могут также включать карбид титана. Хотя механических испытаний после реакции не проводили, пет оснований ожидать, что нечувствительность свойств к реакции в любом из этих случаев будет в какой-либо степени большей, чем для взаимодействия с бором. Наблюдения были истолкованы таким  [c.299]

Полное ухудшение состояния композиционных материалов типа титана, упрочненного волокнами борсика, приводит согласно рис. 7 к снижению разрушающей деформации до 4500 мкдюйм/дюйм (0,45%). Данные табл. 2 свидетельствуют, что эта деформация равна ожидаемой деформации разрушения силицида титана, и подтверждают представление о том, что разрушение таких композиционных материалов контролируется свойствами промежуточного соединения. При данной деформации напряжение в волокне борсика равно 270 ООО фунт/кв. дюйм (189,8 кгс/мм ) или 315 ООО фунт/кв. дюйм (221,5 кгс/мм ), если в результате реакции с волокнами, покрытыми карбидом кремния, образуется силицид титана (вследствие более высокого модуля упругости).Отмеченные значения прочности близки к соответствующим величинам для партий волокна, полученных на первых этапах освоения технологии. Из результатов некоторых прежних работ следует вывод о том, что либо карбид кремния образует менее вредные продукты, либо скорость их образования меньше, чем в случае реакции с бором. Другая высказанная по этому поводу точка зрения состоит в том, что покрытие карбида кремния на боре (борсик) является жертвенным и предотвращает какое-либо ухудшение свойств до завершения реакции, после чего может начаться взаимодействие титана с лежащим под покрытием бором.  [c.308]

Из (3-1) видно, что частота собственных колебаний i увеличивается с уменьшением массы, так как при оди- наковых значениях feo произведение в знаменателе дроби растет быстрее, чем сумма в числителе. Так как Му обо- значает массу иона неметалла (углерода, азота, кисло- рода или кремния), то нетрудно видеть, что карбиды будут иметь большие частоты собственных колебаний по сравнению с нитридами и силицидами а-фазы тех же металлов. Что касается окислов двухвалентных металлов, то только окислы бериллия, магния и кальция будут иметь частоты собственных колебаний большие, нежели карбиды причем частота собственных колебаний окиси кальция из-за малого значения квазиупругой постоянной будет почти совпадать с частотой карбида титана.  [c.77]

Свойства Карбид бора Карбид край- ни Карбид 1 нтана Карбид хрома Нитрил тлтапм Порид титана Силицид молибдена  [c.606]

С помощью комплекса рентгенографических, металлографических, микрорентгеноспектральных методов исследования прямых и параллельных шлифов спаев, изготовленных при 1200° С в течение 3—5 мин в атмосфере аргона, было показано [1], (рис. 1), что продукты взаимодействия титана марки ВТ-1-0 с бесщелоч-ным алюмоборосиликатным расплавом представлены силицидами и оксидом титана переменной стехиометрии.  [c.225]

В отличие от нитевидных кристаллов сапфира нитевидные кристаллы карбида кремния термодинамически вденее устойчивы, а их взаимодействие с матричным металлом в большей степени требует защитных мер, заключающихся в анесении на поверхность карбидов и силицидов переходных металлов четвертой, пятой и шестой групп периодической системы, например карбидов вольфрама, молибдена, титана и силицида кобальта. Использование никеля в качестве промежуточного защитного слоя в данном случае нецелесообразно, так как оно резко снижает прочность нитевидных кристаллов карбида кремния.  [c.70]


Покрытия из металлов п сплавов используют в качестве антикоррозионных (хром, никель, нихром), жаростойких (ниобий, мо либден), жароэрозионностойких (вольфрам). Хромоникелевые само-флюсующиеся сплавы обладают износостойкостью, эрозионной и коррозионной стойкостью, стойкостью к окислению при высокой температуре. Оксиды (оксид алминия, оксид хрома, диоксиды циркония или титана) применяют как теплозащитные покрытия, обладающие высокой жаро- и коррозионной стойкостью, твердостью. Бориды различных металлов имеют высокую твердость и хорошую жаростойкость, силициды — высокую термо- и жаростойкость. Карбиды металлов в большинстве случаев характеризуются высокой твердостью, износо- и жаростойкостью нитриды титана, циркония, гафния — высокой твердостью, износо- и термостойкостью, устойчивостью к коррозии.  [c.139]

Керамической основой в кермете служат окислы и металлоподобные соедИ нения карбиды, бориды, силициды и нитриды — таких переходных металлов, как Si, Ti, Zr, Mo и др. Металлической составляющей служаг сплавы группы железа, хром, алюминий. Из керметов на базе карбида титана изготовляют, например, диски и лопатки газовых турбин. Прекрасными материалами с высо кими жаропрочностью и жаростойкостью являются керметы на основе боридов переходных металлов и керметы на оксидной основе.  [c.370]

Механохимический синтез порошков боридов, карбидов, силицидов, оксидов, сульфидов переходных металлов был осуществлен взрывным методом в вибромельницах [109, 110] инициирование быстро протекающей реакции синтеза осуществлялось механоактивацией порошков исходных компонентов (металла и углерода, бора или кремния) в течение нескольких минут. Изучение Порошков карбидов бора, титана, циркония, гафния, ванадия, тан- 1 ла, вольфрама, полученных механохимическим синтезом в Мельницах, показало, что средний размер частиц составляет 6— нм [111]. Порошки нитридов переходных металлов с размером  [c.39]

Существуют различные виды керметов. По результатам взаимодействия керамической фазы с металлом можно выделить две осгювные группы керметов. Первая группа — это керметы с применением металлоподобных тугоплавких соединений на металлической связке. К этой группе относятся керметы на основе большинства карбидов, боридов, нитридов, силицидов, а также керметы, содержащие карбид титана по своим свойствам они не уступают лучшим видам твердых сплавов металлов. Для этой группы характерна плотная и прочная связь между металлом и металЛ оподобной фазой благодаря ее хорошему смачиванию металлом. Спекание таких керметов основано на обжиге при температуре, несколько превышающей температуру плавления металла связки. Образующаяся при этом жидкая подвижная металлическая фаза полностью смачивает поверхность металлоподобного соединения, проникая в мельчайшие трещины и неровности поверхности зерен кер-мета и обеспечивая тем самым его высокие прочностные свойства.  [c.240]

Титан и сплавы на его основе обладают высокой коррозионной стойкостью (сопротивлением межкристаллитной, щелевой и другим видам коррозии), удельной прочностью. Недостатками титана являются его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости. Азот, углерод, кислород и водород, упрочняя титан, снижают его пластичность, сопротивление коррозии, свариваемость. Титан плохо обрабатывается резанием, удовлетворительно — давлением, сваривается в защитной атмосфере широко распространено вакуумное литье, в частности вакуумнодуговой переплав с расходуемым электродом. Титан имеет две аллотропические модификации низкотемпературную (до 882,5 °С) — а-титан с ГПУ решеткой, высокотемпературную — р-титан с ОЦК решеткой. Легирующие элементы подразделяют в зависимости от их влияния на температуру полиморфного превращения титана (882,5 °С) на две основные группы а-стаби-лизаторы (элементы, расширяющие область существования а-фазы и повышающие температуру превращения — А1, Оа, Ое, Га, С, О, Н) и р-стабилиза-торы (элементы, суживающие а-область и снижающие температуру полиморфного превращения, — V, N6, Та, 2г, Мо, Сг, Мп, Ре, Со, 81, Ag и др.), рис. 8.4. В то же время легирующие элементы (как а-, так и р-стабилизаторы) можно разделить на две основные группы элементы с большой (в пределе — неограниченной) и ограниченной растворимостью в титане. Последние могут образовывать с титаном интерметаллиды, силициды и фазы вне-  [c.191]

Наиболее часто для изготовления термоэлектродов используется графит в паре либо с такими металлами, как вольфрам или рений, либо с графитом, легированным бором. Для окислительных сред тер-мсэлектроды изготовляются из силицидов таких переходных металлов, как молибден, вольфрам, рений. В процессе окислительного нагрева силицидов на поверхности образуется стеклообразная пленка двуокиси кремния, защищающая изделие от дальнейшего окисления и разрушения. Для измерения температур расплавленных сталей и чугу-нов эффективно используются термоэлектроды из боридов циркония и хрома. При измерении температуры среды, в которой возможны выделения углерода и, следовательно, карбндизация элементов термопары, в качестве термоэлектродов используются карбиды титана, циркония, ниобия, тантала, гафния. В окислительных средах они не стойки.  [c.289]

Кремний относится к числу легирующих элементов, постоянно присутствующих в стали, и оказывает значительное влияние на характер и состав включений. Кремний образует с марганцем легкоплавкие силикаты и уменьшает растворимость титана в твердом растворе. В изломе обнаружены одиночные включения сложного состава, содержащие кремний, кальций, серу. Это крупные включения округлой или неправильной формы с неровной поверхностью. Во включениях округлой формы кремний присутствует вместе с карбосульфидом титана (рис. 114, е), неправильной формы — силициды с титаном и фосфором, (рис. 114, ж).  [c.267]

В качестве катодных присадок для повышения пассиви-руемости титана и его сплавов могут быть использованы различные электроположительные металлы (палладий, платина, рутений и ряд других металлов платиновой группы), а в некоторых условиях даже и менее благородные металлы — Re, Си, Ni, Мо, W и др.) Дальнейшее исследование возможности увеличения пассивируемости сплавов применением в качестве активных катодных центров некоторых интерметаллидов и таких соединений как карбиды, нитриды, силициды [2, 97] для повышения пассивации титана может привести также к интересным и важным результатам.  [c.126]

Защитные свойства пленки ухудшаются при повышении содержания щелочи выше 10 % в результате образования цирконатных анионов, переходящих в расплав. В гало-генидных расплавах металлы могут эффективно пассивироваться также слоями карбидов, силицидов и т. п., образуемых за счет восстановления элементов — комплек-сообразователей, входящих в состав кислородсодержащих анионов — примесей (С0 , SiO ", SiO " и т. п.). Так, на поверхности титана и циркония в расплаве хлоридов щел04но-земельных металлов с массовой долей 2. .. 10 % двуокиси кремния при 900 °С (атмосфера инертная) образуются плотные слои дисилицидов этих металлов  [c.377]

Механохимический синтез порошков боридов, карбидов, силицидов, оксидов, сульфидов переходных металлов был осуш е-ствлен взрывным методом в вибромельницах [96,97] инициирование быстро протекаюш ей реакции синтеза осуш ествлялось механоактивацией порошков исходных компонентов (металл и углерод, бор или кремний) в течение нескольких минут. Изучение порошков карбидов бора, титана, циркония, гафния, ванадия, тантала, вольфрама, полученных механохимическим синтезом в мельницах, показало, что средний размер частиц составляет 6-20 нм [98]. Порошки нитридов переходных металлов с размером частиц несколько нанометров синтезированы размолом металлических порошков в вибромельнице в атмосфере N2 [99].  [c.41]


Нагрев титана, ниобия в натриевосиликатном расплаве состава 36%НазО, 64% 5Юа сопровождается образованием силицидов  [c.124]

Силициды [ЮЗ, 106, 108] бара ванадия вольфрама ко-бальта аргаяца молибдена титана храма  [c.25]


Смотреть страницы где упоминается термин Силициды титана : [c.79]    [c.167]    [c.273]    [c.20]    [c.543]    [c.273]    [c.426]    [c.267]    [c.333]   
Производство ферросплавов (1985) -- [ c.273 ]



ПОИСК



Силицид ванадия титана

Силициды

Титан

Титанит

Титания



© 2025 Mash-xxl.info Реклама на сайте