Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение импульсов Кармана

Интегральное уравнение импульсов впервые было выведено Карманом, который применил закон количества движения (гл. 4) к течению в пограничном слое на плоской пластине. Уравнение (8-18) и его обобщение, уравнение (8-21), часто называются интегральными уравнениями импульсов Кармана.  [c.183]

I O уравнения импульсов Кармана (8-21). Методы, которые используются в последнем случае, являются приближенными и основаны на задании той или иной функции распределения скорости ulU = f ylb x)), которая удовлетворяет всем необходимым физическим граничным условиям и допускает профили с перегибами.  [c.218]


Уравнение (26) часто представляют интегральным уравнением импульсов Кармана [158,1081. Оно используется как при ламинарном течении, так и при турбулентном. Это возможно в тех преде-  [c.28]

Выражение (8.81) известно как интегральное соотношение Кармана или уравнение импульсов для плоского пограничного слоя.  [c.340]

Поскольку сопротивление давления определяется только распределением давления по поверхности тела, естественно попытаться в рамках теории идеальной жидкости построить такую схему течения, которая давала бы теоретическое распределение, близкое к действительному. Схема безотрывного обтекания круглого цилиндра потенциальным потоком, рассмотренная в гл. 7, дает удовлетворительный результат только для лобовой части поверхности цилиндра, а на тыльной ее стороне теоретическое и опытное распределения давлений резко расходятся, причем теория приводит к парадоксу Даламбера. Схема отрывного обтекания (Кирхгофа), как отмечено выше, дает более точный результат по распределению скорости, однако расчетное сопротивление при этом почти в 2 раза меньше действительного. Хорошая согласованность теоретических и экспериментальных результатов получается при использовании схемы так называемой вихревой дорожки Кармана, согласно которой за обтекаемым телом образуется полоса, заполненная дискретными вихрями, расположенными в шахматном порядке (рис. 10.3). При определенном соотношении расстояний между вихрями эта дорожка является устойчивой и с помощью уравнения импульсов можно найти теоретическое значение вихревого сопротивления.  [c.393]

Это уравнение известно как интегральное соотношение Кармана или уравнение импульсов для плоского пограничного слоя. Оно пригодно как для ламинарного, так и для турбулентного слоев, но для каждого из них по-разному определяется касательное напряжение т,,. Давление в соотношении (8-81) можно исключить, использовав уравнение Бернулли для внешней границы слоя. Тогда (8-81) примет вид  [c.373]

Интегрирование этих уравнении поперек пограничного слоя приводит к уравнению импульсов (уравнение Кармана)  [c.111]

Взаимозависимость между нарастанием толщины пограничного слоя, касательным напряжением на стенке, градиентом давления с учетом формы профиля скорости может быть выражена уравнением импульсов, или интегральным соотношении Кармана (8-21). Для установившегося течения это соотношение запишем в виде  [c.274]


Нетрудно заметить, что из соотношения (8.93) при стремлении значения у к нулю получается интегральное соотношение импульсов в виде (8.51). Уравнение (8.51) было использовано в качестве основного для построения приближенного интегрального метода (Кармана—Польгаузена). В данном случае можно развить метод последовательных приближений. Произведем замену переменных  [c.296]

Кармана — Никурадзе уравнение для коэффициента трения в трубе 96 Кармана уравнение для коэффициента турбулентного переноса импульса 315 Касательное напряжение 26, 78  [c.437]

Продифференцировав произведение в скобках в уравнении (6.44) и исключив во втором члене 61 с помощью формпараметра, получим окончательное уравнение для толщины потери импульса в плоском пограничном слое несжимаемой жидкости (уравнение Кармана)  [c.155]

В такой записи уравнение Кармана является обыкновенным дифференциальным уравнением относительно неизвестной толщины потери импульса б .  [c.163]

В пограничных слоях могут переноситься импульсы, видимая энергия, теплота и вещество. Соответственно с этим следует говорить о слоях гидродинамическом, энергетическом, тепловом и диффузионном. К расчету толщин указанных слоев можно применить метод Кармана для расчета гидродинамического слоя использовать уравнение количеств движения, для энергетического —уравне-  [c.221]

Автомодельная струя над точечным источником тепла и импульса. Уравнение распространения конвективного фронта (3.7) позволяет построить одномерную интегральную модель нестационарной напорно-конвективной струи, альтернативную конвективным моделям [8, 21]. Опираясь на приближение (3.1), используем для упрощения ступенчатые профили Тейлора (3.4) для вертикальной скорости и безразмерной потенциальной температуры. Тогда в соответствии с методом Кармана - Польгаузена интегрирование уравнений (1.2), (1.3) по площади приводит к соотношениям  [c.98]

Для расчетов скорости нарастания толщины пограничного слоя и положения точки отрыва для произвольного распределения давления вдоль поврехности обычно успешно используют интегральное уравнение импульсов Кармана. Широко применяемый метод Денхофа и Тетервина [Л. 15] основывается на экспериментально полученной зависимости профилей от формпараметра (рис. 12-14). Тогда для тонких двумерных слоев можно использовать уравнение (12-48).  [c.277]

В работе Франкля и Войшеля авторы встали на путь непосредственного обобщения на случай газового потока метода Кармана, упростив его лишь допущением о постоянстве напряжения трения поперек пограничного слоя. Идя по этому пути, они сначала нашли форму профилей скорости в сечениях слоя, затем обычным способом получили так называемый закон сопротивления , т. е. связь между местным коэффициентом трения и числом Рейнольдса пограничного слоя. Исключая это число Рейнольдса из уравнения закона сопротивления и уравнения импульсов, им удалось получить искомую связь между местным коэффициентом сопротивления и числом Рейнольдса, построенным по скорости набегающего потока и абсциссе данной точки на пластине.  [c.719]

Полный расчет пограничного слоя для заданного тела путем решения дифференциальных уравнений требует во многих случаях столь обширной вычи лIiтeльнoй работы, что может быть выполнен только на электронных вычислительных машинах. Это особенно ясно будет видно из примеров которые будут рассмотрены в главе IX (см., в частности, 11). Поэтому в тех случаях, когда точное решение уравнений пограничного слоя невозможно при умеренной затрате времени, возникает необходимость применения приближенных способов, и притом иногда даже таких, которые оставляют желать лучшего в смысле точности. Для получения приближенных способов необходимо отказаться от требования, чтобы дифференциальные уравнения пограничного слоя удовлетворялись для каждой частицы жидкости, и ограничиться, во-первых, выполнением граничных условий и контурных связей на стенке и при переходе к внешнему течению и, во-вторых, выполнением только суммарного соотношения, получаемого из дифференциальных уравнений пограничного слоя как некоторое среднее по толщине слоя. Такое среднее дает уравнение импульсов, получающееся из уравнения движения посредством интегрирования по толщине пограничного слоя. В дальнейшем, излагая приближенные способы решения уравнений пограничного слоя, мы неоднократно будем пользоваться уравнением импульсов, которое часто называется также интегральным соотношением Кармана [ ].  [c.152]


НОГО слоя некоторым приближенным однопараметрическим семейством, или, как иногда говорят, набором кривых, составленным на основе общих соображений о действительной форме профилей скорости и, в первую очередь, граничных условий, которым они должны удовлетворять. Наличие свободного параметра, представляющего неизвестную функцию продольной координаты в пограничном слое, позволяет так разместить приближенные профили скоростей вдоль слоя, что они смогут удовлетворить некоторому интегральному условию (в теории Кармана— теореме импульсов), выводимому из общих уравнений пограничного слоя. Конечно, как обычно, точность такого рода решений в среднем во многом зависит как от более или менее удачного выбора формы кривых, образующих приближенное семейство, так и от выбора основного интегрального условия, позволяющего найти распределение вдоль по пограничному слою параметра этого семейства. В качестве основного интегрального ус/ювия Карман выбрал уравнение импульсов, которое в применении к теории пограничного слоя приобрело в дальнейшем его имя.  [c.621]

Рассматриваемая задача сложнее, чем расчет теплообмена при турбулентном течении в трубе жидкости с постоянными физическими свойствами (гл. 9), так как в этом случае отсутствуют опытные данные по профилям скорости, из которых можно определить коэффициент турбулентного переноса импульса. Профиль скорости в этом случае требуется находить расчетным путем. Для вычисления коэффициента турбулентного переноса импульса в подслое Дайсслер использовал уравнение (6-37), а в турбулентном ядре — уравнение Кармана [Л. 7]  [c.315]

Основные расчетные соотношения получены ранее и сводятся к простым формулам (10.10) и (10.15). Для диффузоров с несомкнув-шимся пограничным слоем теоретическая скорость в выходном сечении С21 совпадает с максимальной и, следовательно, Д = 3, а Интегральные площади вытеснения б, и потери энергии 5 связаны с площадью потери импульса б эмпирическими и полуэмпирнческими соотношениями и, следовательно, могут быть найдены в результате решения уравнения Кармана (6.45). Это решение для осесимметричного течения несжимаемой жидкости (р = onst) может быть записано в виде  [c.279]

Почленное интегрирование уравнения движения плоского пограничного слоя (1-1-3) в пределах от О до д. с учетом уравнения сплошности и уравнения (1-1-7), приводит к так называемому интегральному соотношению импульсов (уравнению Кармана). Если для проводящей жидкости принять jyBz= onst по сечению пограничного слоя, то  [c.11]

Поскольку уравнения неразрывности и Навье — Стокса выражают физические законы сохранения массы и импульса, ясно, что все следствия из этих уравнений, выведенные в настоящем пункте, также представляют собой следствия указанных физических законов. Почти сразу же после появления первых работ по теории изотропной турбулентности Прандтлем было замечено, что, например, соотношение Кармана (14.3) может быть получено из интегральной формы закона сохранения массы без перехода к дифференциальному уравнению (1.6) (см. Вигхардт (1941)). В дальнейшем в работах Маттиоли (1951) и Хассельмана (1958) было показано, что аналогичный вывод, использующий лишь интегральную форму законов сохранения массы и импульса, возможен также и для соотношений (14.4), (14.5) и (14.9).  [c.111]


Смотреть страницы где упоминается термин Уравнение импульсов Кармана : [c.207]    [c.476]    [c.20]   
Теплотехнический справочник Том 2 (1976) -- [ c.65 ]

Теплотехнический справочник том 2 издание 2 (1976) -- [ c.65 ]



ПОИСК



Импульс интегральное уравнение (Кармана)

Кармана

Слой пограничный интегральное уравнение импульсов Кармана

Уравнение импульсов

Уравнения Кармана



© 2025 Mash-xxl.info Реклама на сайте