Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температура потенциальная

Так как температура и скорость связаны линейно и Рг=1, то толщина динамического S и теплового Д слоев одинакова. Определим постоянные в уравнении (11.26). Если температура на внешней кромке пограничного слоя равна температуре потенциального потока (см. рис. 11.2), тогда Т ==Т , при w =Wx.oo и при  [c.205]

Уравнение энергии (Х1-23) удовлетворяется, если температура торможения поперек пограничного слоя не изменяется. Из условия равенства температуры на внешней кромке пограничного слоя и температуры потенциального потока находят постоянную в (Х1-24)  [c.226]


Так как температура и скорость связаны линейно и Рг = 1, то толщина динамического б и теплового А слоев будет одинакова. Определим постоянные в уравнении (XI-28). Если температура на внешней кромке пограничного слоя равна температуре потенциального потока (см. рис. XI-2), тогда То = То. со при и То == Т ,  [c.227]

Понятие потенциальной температуры. Потенциальной температурой называется та температура, которую масса воздуха приняла бы, если бы ее, адиабатически сжимая, опустить до нормального уровня (т. е. до поверхности моря) или довести до нормального давления, существующего на этой поверхности. Следовательно, адиабатически расслоенная масса воздуха обладает постоянной потенциальной температурой.  [c.42]

И прямой связи с условной температурой потенциальной энергии фазового превращения не имеет.  [c.235]

Температура Потенциальная температура  [c.29]

Внутренняя энергия вещества является энергией составляющих вещество молекул. В обычных термодинамических процессах изменения претерпевают лишь кинетическая и потенциальная части внутренней энергии. Первая зависит от скоростей движения молекул (поступательного, вращательного, колебательного), вторая обусловливается наличием сил взаимодействия (притяжения или отталкивания) между молекулами и расстоянием между ними. Кинетическая часть внутренней энергии изменяется, согласно кинетической теории материи, с изменением температуры, потенциальная же — с изменением расстоя-  [c.69]

Пример 5.6. Воздух массой 1 кг адиабатно расширяется о давления р, = 1,019 МПа при температуре 100° С до давления / 2 = 0,102 МПа. Найти конечные объем, температуру, потенциальную и термодинамическую работу, изменение внутренней энергии и энтальпии. Показатель процесса расширения принять равным k = = 1.4.  [c.59]

В этом случае адиабатный стационарный процесс с идеальным газом, в котором изменения кинетической и потенциальной энергии ничтожны, является также изотермическим. Для реальной жидкости возможны изменения температуры, так как энтальпия — функция и температуры и давления.  [c.55]

Добавление энергии при температуре и давлении, соответствующих плавлению, приводит к увеличению потенциальной энергии и межатомных расстояний до такой степени, что жесткая структура нарушается, и твердая фаза переходит в жидкую. Увеличение расстояния между частицами позволяет им приобрести некоторое количество поступательной и вращательной энергии. Общая энергия на единицу массы, поглощенная при переходе из твердой фазы в жидкую, называется скрытой теплотой плавления . Так как поступательное и вращательное движение частиц в жидкой фазе при точке замерзания сильно затруднено, то эта фаза почти подобна твердой фазе при тех же температуре и давлении. Однако частицы жидкой фазы при температуре кипения больше удалены друг от друга и имеют большую свободу в поступательном и вращательном движении.  [c.59]


Добавление энергии при температуре кипения и соответствующем давлении настолько увеличивает потенциальную энергию, что позволяет частицам отойти друг от друга на относительно большие расстояния, и вещество из жидкого состояния переходит в газовую фазу. В газовой фазе силы притяжения между частицами слабы, и частицы получают свободу независимого перемещения и вращения. Общая энергия на единицу массы вещества, поглощенная при переходе из жидкой фазы в газовую, называется скрытой теплотой испарения .  [c.59]

Стационарный компрессор используется для сжатия 1 моль мин гелия от 1 до 10 атм. За компрессором следует холодильник, который отводит теплоту сжатия. Газ поступает в компрессор при температуре 500 R (4,5 °С) и выходит из холодильника при температуре 550 °R (32,3 °С). Предположить, что компрессор работает в адиабатных условиях и обратимо. Пренебрегая изменениями кинетической и потенциальной энергии, определить скорость отвода теплоты от холодильника.  [c.67]

Эти коэффициенты являются функциями температуры и внутримолекулярной потенциальной энергии. Хотя значения второго и третьего вириальных коэффициентов получены на основании предположенной функции потенциальной энергии между молекулами, расчеты сложны и результаты в настоящее время применяют лишь частично.  [c.169]

Пренебрегая изменением кинетической и потенциальной энергии, считать, что изменение энтальпии для этого процесса равно нулю, так, что конечная температура может быть определена по данным табл. 10 (рис. 36 или рис. 37) тогда найдем, что она будет немного меньше 25 °С. Изменение энтропии может быть определено поданным табл. И (см. рис. 35 или 36) и составит 51,0 — 42,3 = = 8,7 кал моль  [c.187]

Углекислый газ подается со скоростью 1 моль мин через редуктор в изолированный трубопровод, и давление понижается с 10 атм до 1 атм. Температура газа при входе в редуктор 100 °С. Определить температуру после понижения давления. Изменениями кинетической и потенциальной энергии пренебречь.  [c.188]

Например, поток горячего газа в промышленном процессе представляет собой потенциальный источник для получения работы относительно окружающей температуры.  [c.208]

ЭФХ методы обработки заготовок обладают большими потенциальными возможностями. Они дополняют н в ряде случаев заменяют традиционные способы обработки при изготовлении деталей машин, аппаратов и приборов, работающих в широком диапазоне нагрузок и температур, а также в агрессивных средах. Особенно эффективны ЭФХ методы в инструментально-штамповом производстве при изготовлении литейных форм, пресс-форм, кокилей, где они полностью или в значительной степени заменяют Дефицитный труд высококвалифицированных рабочих.  [c.305]

В этом уравнении коэффициенты fiv при степенях I/o в правой части уравнения, называемые вириальными коэффициентами, выражаются через потенциальную энергию взаимодействия молекул данного газа и температуру Т.  [c.39]

Поскольку кинетическая составляющая внутренней энергии целиком определяется температурой тела, так как температура есть мера средней кинетической энергии молекул, а потенциальная ее составляющая при заданной температуре зависит только от удельного объема (расстояния между молекулами), то, следовательно, и полная внутренняя энергия будет являться функцией параметров и в данном состоянии тела будет иметь вполне определенную величину.  [c.54]

С повышением температуры тела на dT увеличивается скорость молекул или увеличивается его внутренняя кинетическая энергия. С увеличением объема тела на dv увеличивается расстояние между молекулами, что связано с увеличением его внутренней потенциальной энергии.  [c.62]

Пренебрегая при статическом нагружении изменениями кинетической энергии системы, а также потерями энергии на внутренние трения, изменение температуры, магнитные и электрические явления, которые имеют место при деформации, можно утверждать, что уменьшение потенциальной энергии грузов равно потенциальной энергии деформации, накопленной упругой конструкцией, т. е.  [c.386]


При быстром образовании физического контакта твердого тела с расплавом, например при сварке путем расплавления одного из соединяемых материалов, сначала на границе твердой и жидкой фаз будет наблюдаться пик межфазной энергии w аналогичный w (см. рис. 1.2, б), так как переход атомной системы в новое состояние происходит не мгновенно, а за некоторый конечный промежуток времени. Длительность ретардации (задержки) пика поверхности раздела, как называют этот период, может быть приближенно рассчитана как время жизни атома перед потенциальным барьером или определена опытным путем. На основании этих данных можно определить допустимую длительность контакта твердой и жидкой фаз и оптимальную температуру сварки или пайки.  [c.14]

Внутренняя энергия системы есть сумма всей кинетической и потенциальной энергии частиц. Жидкостям и аморфным телам свойствен лишь ближний порядок, а газы имеют беспорядочное расположение частиц при максимальной внутренней энергии системы. Состояние вещества зависит от температуры Т и значения сил межмолекулярного взаимодействия. Энергия теплового движения или так называемая энергетическая температура частиц равна кТ. При высоких температурах значение кТ превосходит энергию взаимодействия молекул и вещество может быть только газом. Напротив, в кристалле частицы связаны сильно и энергия взаимодействия много больше кТ.  [c.31]

Если кривую к, 1), характеризующую расслоение воздуха, преобразовать, заменив обыкновенную температуру потенциальной температурой, го для нгнасыщзнного воздуха получится примерно картина, изображенная на фиг. 23, а и Ь.  [c.44]

В результате массового перевода доменных печей на работу с повышенным давлением газа мод колошником появилась возможность использования потенциальной энергии доменного газа. Доменный газ, имеющий давление 0,25 -0,3 МПа, расширяется в специальной газовой турбине до давления около 0,11 МПа, еще достаточного для транс портировки его потребителю. Мощность развиваемая такой турбиной, зависит от количества доменного газа, его началь ного давления и температуры. Например выход доменного газа из домны объемом 1400 м достигает 250 000 м /ч мощ ность, развиваемая турбиной при давле НИИ газа 0,25 МПа и температуре 500 С составит около 12 000 кВт. Конструкция турбины мало отличается от описанных выше.  [c.176]

А. Согласно уравнению (1-69), работа, требуемая для нагнетания 18 фунтов (8200 г) жидкой воды с начальной температурой 60 °F (289 °Ю от 1 до 10 атм при адиабатном обратимо протекающем процессе, при условии, когда изменения кинетическрй и потенциальной энергии незначительны, равна  [c.58]

Определить скорость переноса теплоты и минимальную мощность (л. с.), необходимые для сжатия 1 моль1мин идеального газа при первоначальных температуре 500 °R (4,5 С) и давлении 1—10 атм при следующих условиях, пренебрегая изменением кинетической и потенциальной энергии (стационарный процесс)  [c.67]

Идеальный газ проходит со скоростью 1 моль мин через вентиль, понижающий давление, в изолированный трубопровод, причем давление в этом трубопроводе снижается от 100 до 15 фунт/дюйм (от 7,03 до 1,05 кГ1см ). Если температура в начале потока 30 °С, определить температуру в конце потока по понижению давления. Считать, что изменения кинетической и потенциальной энергии незначительны, а теплоемкость 7 брит. тепл. ед. (7 кал) не зависит от температуры.  [c.67]

Для обеспечения стационарного процесса применяют компрессор для сжатия 44 фунтЫин (20 кПмин) двуокиси углерода от 1 атм до 100 атм. Зате.м холодильник отводит часть теплоты сжатия. Газ поступает в компрессор при температуре 500 °R (4,5 °С) и покидает холодильник при температуре 550 (32,3 °С). Предполагая, что компрессор работает аднабатно и обратимо и изменения кинетической и потенциальной энергии незначительны, определить скорость передачи теплоты от холодильника.  [c.188]

Энвргеттеский баланс. Для адиабатных стационарных систем, в которых не производится никакой внешней механической работы, а изменения потенциальной и кинетической энергии незначительны, ДЯ = 0. Изменение энтальпии можно вычислить в зависимости от температуры и числа молей окиси углерода, реагирующих по следующей схеме  [c.313]

Конструкция точных германиевых термометров сопротивления претерпела мало изменений с тех пор, как они были впервые разработаны Кунцлером и другими исследователями в 60-х годах [47, 48]. Легированный германий вырезается в форме мостика (рис. 5.34), к ножкам которого прикрепляются золотые проволочки, служащие токовыми и потенциальными выводами. Германий обладает выраженными пьезоэлектрическими свойствами, поэтому очень важно обеспечить крепление без механических напряжений. Обычно для крепления используются сами выводы. Элемент герметически запаивается в позолоченную капсулу, которая заполняется гелием для улучшения теплового контакта. Несмотря на наличие гелия, более двух третей тепла подводится к германиевому элементу через выводы. Это означает, что температура, показываемая термометром, больше зависит от температуры выводов, чем от температуры самой капсулы. Чрезвычайно важно учитывать это при конструировании низкотемпературных установок [50]. То же верно и для платиновых и железородиевых термометров, но в гораздо меньшей степени, поскольку для проволочного чув-ствительного элемента отношение площади поверхности к площади поперечного сечения гораздо больше, чем для германиевого элемента. Как и у других термометров сопротивления, эффект самонагрева измерительным током зависит от теплового контакта с окружающей средой. Если весь термометр погружен  [c.236]

Специфический для германиевых термометров сопротивления эффект возникает вследствие довольно высокого значения коэффициента Пельтье для легированного германия. Он проявляется в том, что сопротивление элемента по постоянному и по переменному току различно [53, 54]. Прохождение постоянного тока через германиевый термометр сопротивления приводит к возникновению градиента температуры вдоль элемента вследствие выделения и поглощения тепла Пельтье на спаях элемента с выводами. Наличие градиента температуры вызывает появление небольшой термо-э. д. с. на потенциальных выводах, что приводит к некоторой погрешности в измерении сопротивления. Если же используется не постоянный, а переменный ток частоты f, то от каждого конца элемента распространяются затухающие тепловые волны. Затухание носит экспоненциальный характер, причем показатель экспоненты пропорционален Уf, так что по мере возрастания частоты тепловые волны все больше сосредоточиваются у концов элемента. Для четырехпроводных элементов в форме моста этот эффект исчезает, когда частота измерительного тока поднимается до такого значения, что тепловые волны перестают достигать потенциальных выводов. В этом случае на потенциальных выводах измеряется истинное сопротивление. Частота, на которой это происходит, зависит от температуропроводности и  [c.237]


Свободная энергия F может быть определена как сумма кинетической и потенциальной энергией частиц. Энергия F называется свободной, поскольку при изотермических процессах она может быть выделена из системы в виде тепла и превращена в работу. Произведение TS — называют энтропийным фактором или связанной энергией. Свободная энергия F и энтропия S являются критериями равновесия термодинамической системы. При достижении равновесия F имеет минимальное, а S максимальное из возможных значений. С повышением температуры F всегда умепьпзается.  [c.28]

Количество теплоты, затраченное на парообразование 1 кг воды при температуре кипения до сухого насыщенного парг, называется полной теплотой парообразования и обозначается буквой г. Теплота парообразования г вполне определяется давлением или температурой. С возрастанием последних г уменьшается и в критической точке делается равной нулю. Полная теплота парообразования г расходуется на изменение внутренней потенциальной энергии или на работу дисгрегации (разъединения) р и на внешнюю работу расширения p v" — v ) --= ij). Величина р называется внутренней, а г з — внешней теплотой парообразования. Полная теплота паробразования равна  [c.178]

Внутренняя энергия реального газа вследствие наличия межмо-лекулярных сил состоит из двух частей кинетической составляющей, являющейся функцией только температуры, и потенциальной составляющей, определяемой положением молекул и зависящей кроме температуры еще и от объема, увеличиваясь при его возрастании.  [c.220]

Еще большее охлаждение реального газа будет при положительной внешней работе, т. е. когда P2V2>piVi и Ui< ui- В этом случае понижение температуры будет обусловлено не только возрастанием потенциальной составляющей внутренней энергии, но и совершением газом внешней работы (также за счет внутренней энергии).  [c.221]

В частном случае абсолютное значение — P Vi в процессе дросселирования может оказаться равным росту потенциальной составляющей внутренней энергии и при этом кинетическая со-ставляюш,ая останется без изменения, а следовательно, не изменится и температура газа Т = Гг).  [c.221]

Если при p2V2абсолютное значение внешней работы будет меньше возрастания потенциальной составляющей внутренней энергии в процессе дросселирования, то кинетическая составляющая несколько уменьшится, т. е. газ будет охлаждаться. Следовательно, при отрицательной внешней работе могут быть случаи дросселирования, когда температура реального газа увеличивается, остается без изменения и уменьшается.  [c.221]

Практически все рассмотренные выще закручивающие устройства создают течения с центральным квазитвердым ядром. Окружная скорость в таких потоках равна нулкз на оси симметрии. Максимум окружной скорости для полностью вынужденного вихря расположен на его внещней фанице, для ограниченных течений практически вблизи внутренней поверхности канала. Для свободного (потенциального) вихря он расположен на более низкой по ращ1усу позиции, ближе к оси, но никогда не может совпадать с осью, ибо в этом случае окружная скорость должна была бы быть равной нулю. Более того, существует еще более жесткое термодинамическое офаничение по максимально допустимой окружной скорости, которая определяется полной температурой газа на входе в закручивающее устройство Г, и показателем изоэнтропы газа к  [c.23]

Как отмечалось выше, изменение температуры по радиусу в приосевой области вихревых труб в некоторых случаях не является монотонным. На периферии такая особенность имеет регулярный характер и проявляется в наличии максимума температуры, несколько смещенного от стенки. Видимо, это объясняется тем, что в пристенной зоне радиальный фадиент осевой скорости имеет противоположный знак по отношению к аналогичному в зоне разделения вихрей, т. е. dVJdr< О, что при неизменном направлении вращения потенциального вихря приведет к возникновению пульсаций завихренности по направлению к зоне разделения вихрей и последующей диссипации (рис. 3.25).  [c.134]

За расчетную схему примем наиболее общий случай течения в вихревой трубе с дополнительным потоком (рис. 4.7). В этом случае режим работы обычной разделительной вихревой трубы представляет собой предельный при О- Используем понятие элементарного объема вращающегося газа dQ. = V nrdr. Условие осевой симметрии обеспечивает отсутствие фадиентов в направлении угловой координаты ф. В сформированном потоке вихревой трубы радиальные скорости пренебрежимо малы. В процессе построения аналитической расчетной цепочки можно использовать принцип суперпозиции, т. е. независимость законов движения по нормальным друг к другу осям координат. Процесс энергообмена в сопловом сечении считаем заверщенным. Определим предельно возможные по разделению энергетические уровни потенциального и вынужденного вихрей. Длина пути перемешивания и фадиент давления определяют предельный эффект подофева приосевого турбулентного моля при его переходе на более высокую радиальную позицию. При этом делается допущение о переходе в сечении, перпендикулярном оси. Осевой снос моля не учитывают. Вязкость и теплопроводность проявляют себя, если присутствуют фадиенты скорости и температуры. Поэтому при формировании свободного вихря вязкость будем учитывать, анализируя процесс затухания окружного момента  [c.191]


Смотреть страницы где упоминается термин Температура потенциальная : [c.571]    [c.153]    [c.235]    [c.32]    [c.379]    [c.11]    [c.141]    [c.238]    [c.332]    [c.24]   
Гидроаэромеханика (2000) -- [ c.507 , c.514 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте