Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Другие источники ядерной энергии

Другие источники ядерной энергии  [c.532]

ДРУГИЕ ИСТОЧНИКИ ЯДЕРНОЙ ЭНЕРГИИ 533  [c.533]

Источники ядерной энергии, таким образом, легко приводятся к сопоставимому виду путем пересчета на тонны содержания радиоактивного вещества. Ресурсы углерода также можно выражать в тоннах, однако качество этих тонн может быть различным, и там, где это возможно, следует выделять отдельные типы или, в случае агрегирования, делать пояснение. Значительно сложнее преобразовать объемные единицы углеводородов в весовые из-за существенного различия плотностей. Последние могут различаться в пределах до 10 % при сопоставлении средних данных по странам и даже более — при сопоставлениях отдельных конкретных видов нефти. Большинство специалистов-нефтяников привыкли работать с баррелями, измеряя запасы в миллиардах (10 ) баррелей и производство — в миллионах баррелей в сутки, а потому большое количество данных в литературе, посвященной нефти, дано в баррелях США. Более того, учет углеводородов — жидких и газообразных — в резервуарах, цистернах, передаваемых по трубопроводам, ведется в объемных единицах. В тех случаях, когда характеристики сырой нефти достаточно хорошо известны, объемные единицы можно преобразовать в весовые. Важно, однако, не упускать из виду то обстоятельство, что тонна нефти и тонна угля совпадают только по массе и ни по какой другой своей характеристике.  [c.22]


Условия подобия являются основой научно поставленного эксперимента. Они позволяют моделировать процесс или явление, т. е. проводить опыт не с натуральным объектом — активной зоной ядерного реактора, а с его геометрической моделью с тепловыделяющими элементами, нагреваемыми другими источниками энергии.  [c.47]

Энергию, необходимую для перехода электрона в свободное состояние или для образования дырки, может доставить не только тепловое движение, но и другие источники энергии, например свет, поток электронов и ядерных частиц, электрические и магнитные поля, механические воздействия и т. д.  [c.14]

Наряду с постоянно поддерживаемыми и развиваемыми научными контактами последовательно расширяется международное сотрудничество СССР в различных областях атомной техники. С 1955 г., выполняя двусторонние правительственные соглашения, заключенные с социалистическими странами, с Францией, Великобританией, Италией, США, Индией, Индонезией, Афганистаном, Ираком, Объединенной Арабской Республикой и другими государствами. Советский Союз участвует в обмене информационными, консультативными и проектными материалами по проблемам народнохозяйственного использования атомной энергии. В соответствии с этими соглашениями советские промышленные предприятия поставляют многим зарубежным странам исследовательские ядерные реакторы и ускорители элементарных частиц, облучающие установки и радиоактивные изотопы — источники ядерных излучений. Советские специалисты участвуют в монтаже и наладке поставляемого оборудования. В советских высших учебных заведениях ведется подготовка национальных кадров инженеров-физиков широкого профиля для ряда государств. При непосредственной помощи СССР построены научно-исследовательские атомные центры в Болгарии, Румынии, Венгрии, Чехословакии, Польше, ГДР, КНР, КНДР, Югославии и Объединенной Арабской Республике. С участием СССР в 1966 г. завершено строительство и ввод в строй действующих энергетических предприятий ГДР атомной электростанции электрической мощностью 70 тыс. кет. При техническом содействии СССР осуществляется строительство первой атомной электростанции электрической мощностью 150 тыс. кет в Чехословакии. Заключены соглашения по сооружению аналогичных атомных электростанций в других странах (Болгарии, Венгрии и др.).  [c.194]

Если предположить, что начнется более широкое использование угля, то органических топлив, возможно, хватит на четыре-пять десятилетий для обеспечения потребностей человечества в энергии. После этого периода основным энергоресурсом может стать или не стать солнечная энергия. Практически уже сейчас ощущается необходимость иметь источник энергии на этот переходный период, причем этот источник должен быть практически неисчерпаемым, дешевым, возобновляемым и не загрязняющим окружающую среду. И хотя ядерная энергия не отвечает полностью всем перечисленным требованиям, она развивается быстрыми темпами. Очень вероятно, что именно она будет этим переходным источником энергии по той простой причине, что никакой другой вид энергии, который был бы столь же доступным, пока не найден. Чтобы достоверно оценить общие ресурсы ядерной энергии, рассмотрим коротко два известных ядерных процесса — деление и синтез.  [c.36]


В данной главе рассмотрено большинство основных источников получения теплоты. Однако лишь один из них —органическое топливо— можно в настоящее время использовать для обеспечения наших потребностей без угрозы основательного подрыва экономики. В принципе могут быть освоены некоторые альтернативные энергоресурсы, однако масштабы времени, необходимого для этого, остаются неопределенными. А ведь на переходный период нам необходим источник теплоты, к тому же достаточно экономичный. Одни полагают, что наши неотложные энергетические потребности и даже потребности на дальнюю перспективу удастся обеспечить за счет ядерной энергии, другие с этим не согласны. Так или иначе, а ядерная энергетика существует, и с этой реальностью необходимо считаться.  [c.157]

Этот вопрос стоит с того времени, как появилась ядерная энергетика он лежит в основе разногласий по поводу ее развития. В течение последних примерно 20 лет на его изучение были израсходованы большие средства. Однако вопрос остается нерешенным. В этом разделе будет подробно рассмотрена безопасность реактора с различных точек зрения физика и техника безопасности инциденты на АЭС, связанные с радиационной опасностью анализ риска. Можно и не ответить на вопрос, насколько безопасна ядерная энергия, но ведь это только часть проблемы. Восприятие населением опасности ядерной энергии очень сильно отличается от восприятия опасности других источников энергии, даже при условии,-что эти другие источники, в конечном счете, более опасны для здоровья людей.  [c.183]

Более полное описание основных типов ядерных реакторов будет дано в следующей главе, а пока отметим, что в сегодняшних атомных электростанциях просто заменены обычные печи, сжигающие уголь или нефть, другим источником тепла. Принцип же использования источника тот же — получение пара, приводящего в движение турбогенераторы. В будущих реакторах, в которых будет происходить прямое преобразование ядерной энергии в электрическую, потребуется, очевидно, гораздо более совершенная технология. Над ней уже кропотливо работают ученые и инженеры, исследующие возможность получения энергии, и в частности из ядерных реакций синтеза в термоядерных реакторах. Уже имеются реальные предложения по созданию ядерных реакторов, в которых ядерная печь , скажем, в 10 или 20 раз горячее, чем в современных реакторах (однако гораздо холоднее тех печей , на которых будут работать в далеком будущем термоядерные реакторы). И поскольку температура плавления твердотопливных стержней (или, вернее, их сборок) ограничивает возможности сегодняшних ядерных реакторов, то был выдвинут ряд предложений о постройке реакторов, работающих на жидком или газообразном ядерном топливе.  [c.67]

На одном из симпозиумов в 1979 г. [93] — [95] в дискуссии по концепции водородной экономики выявилось несколько интересных моментов. Обычно принимается, что нужно иметь первичные энергоисточники — ядерное деление, ядерный синтез, солнечную, геотермальную энергии и т. д.— для получения водорода по ценам, конкурентоспособным с ценами на ископаемое топливо любым из трех методов прямым термическим, термохимическим или электролизом. Существует мнение, что можно улучшить процесс электролиза путем повышения рабочей температуры до 300 °С или даже до 1000 °С и использования некоторых из технических новшеств из области топливных элементов. При этих условиях будет возможно производить водород по цене, только на 40 % превышающей цену на бензин на НПЗ в США в 1974 г. Другой источник [94] оценивает затраты [в ценах 1979 г., долл. (США)/10 Дж] следующим образом  [c.210]

В ежегодных отчетах Комиссии по атомной энергии [14—19] и в других источниках [8,20] сообщается о работах по созданию специальных ядерных зарядов для промышленных целей, которые удовлетворяли бы этим требованиям.  [c.8]

Другим источником информации о ядерных силах служат опыты по рассеянию нуклонов на нуклонах при различных энергиях падающих частиц. В классической физике силы, действующие между двумя частицами можно измерять при различных взаимных расстояниях, скоростях и ориентациях их моментов с любой степенью точности. Микромир подчиняется законам квантовой механики и согласно принципу неопределенности невозможно установить два нуклона на строго определенном расстоянии друг от друга и измерять действующую между ними силу. Такой простой путь изучения ядерных сил закрыт.  [c.66]


Теперь, спустя три четверти века, мы знаем, что кроме угля есть другие источники энергии такого же масштаба — нефть, газ, ядерная энергетика [9]. Энергетические анализы и прогнозы, подобные тем, которые делал Н. А. Умов, заполнили страницы технических журналов. Прогнозы разрабатываются уже не одиночками, а большими коллек--тивами специалистов, вооруженных мощной компьютерной техникой.  [c.18]

Можно указать следующие основные преимущества ядерной энергии (1) относительно малые количества горючего, необходимые для получения тепловой энергии, (2) независимость от источника кислорода или другого окисляющего вещества, (3) потенциально большая энергия на единицу веса и (4) возможные экономические преимущества.  [c.253]

Энергию, необходимую для перевода электрона в свободное состояние ли для образования дырки, может доставить не только тепловое движение, но и другие источники энергии, например, поглощенная материалом энергия света, энергия потока электронов и ядерных частиц, энергия электрических и магнитных полей, механическая энергия и т. д., и т. п.  [c.36]

Поскольку же ядерная энергия стала в современной научной фантастике вполне обыденным, легко доступным и самим собой разумеющимся инструментом, быть может, именно поэтому никому из нынешних писателей и в голову не приходит искать решение сложных технических проблем с помощью перпетуум мобиле. В других обстоятельствах вечный двигатель, наверное, мог бы оказаться подходящей темой для како-го-нибудь фантастического рассказа или романа, однако рядом с таким могучим, поражающим воображение источником энергии, каким является атомное ядро, вопрос о вечном движении просто теряет смысл ведь само понятие идеальной машины становится до крайности несовременным и банальным, а подобная идея, конечно, уже не может рассчитывать на успех у теперешнего искушенного читателя.  [c.227]

Комплекс агрегатов установки, обеспечивающий преобразование тепловой энергии ядерного реактора в другие ее виды, называется ядерной энергетической установкой. В основе работы ядерной энергетической уста-новки лежит превращение ядерной энергии в механическую энергию путем использования ядерного реактора в качестве источника тепловой энергии.  [c.521]

На основании этих радиационных характеристик легко определить другие производные характеристики удельную дифференциальную и полную величину энерговыделения источника 5г(Ег, Т, I, ги ) и 8 Т, t, ш) [Мэв/сек на 1 г ядерного горючего] абсолютный выход Егп эффективной энергии Е(Е , Т, 1) и полной энергии /(Г, ) [Мэе на 1 акт распада] абсолютный числовой выход квантов Р (Е , Т, 1) и р Т, t) [квант/распад дифференциальные и полные гамма-постоянные смеси продуктов деления Кх Е, Т, () и К(Т, ) [р см 1 (ч мкюри)].  [c.183]

Перейдем к механизму явления внутренней конверсии. Ядро испускает у-квант, который тут же поглощается электроном атомной оболочки, получающим всю энергию кванта. Интересная особенность этого процесса состоит в том, что он в основном происходит за счет виртуальных, а не реальных квантов. Виртуальным называется квант, у которого нарушено правильное соотношение между энергией Е и импульсом k, т. е. у которого Е Ф k. Возможность существования таких квантов допускается соотношением неопределенностей такие кванты могут существовать, но лишь короткое время и на небольших расстояниях от их источника (см. гл. VII, 5). Возникает вопрос, как отличить, являются ли кванты, ответственные за внутреннюю конверсию, виртуальными или реальными, поскольку энергия и импульс этого кванта не измеряются. Отличие проявится в том, что если внутренняя конверсия происходит только 840 за счет виртуальных квантов, то интенсивность ядерного v-излучения не изменится после того, как ядра лишатся своих электронов. Другими словами, внутренняя конверсия через виртуальные кванты — процесс, не кон- о курирующий с 7-распадом, а параллельный " ему. Технически наблюдение v-излучения  [c.265]

Развиваются экспрессные методы активационного анализа без разрушения, опирающиеся на измерение короткоживущих активностей и даже просто продуктов ядерных реакций. Эти методы используются, в частности, для непрерывного автоматического контроля за ходом различных технологических процессов. Идентификация проводится по Р-распадным электронам, по у-квантам радиационного захвата (п, у), по нейтронам и другим частицам, вылетающим в результате ядерных реакций. Используются и у-кванты, возникающие при возвращении ядра в основное состояние после неупругого столкновения с нейтроном. Для повышения селективности анализа обычно измеряется энергия у-квантов, а для каскадных процессов часто используется регистрация на совпадения. Примером экспрессного анализа по короткоживущей активности может служить определение содержания кислорода посредством активации быстрыми нейтронами, вызывающими реакцию вО (п, p)7N . Период полураспада изотопа составляет всего лишь 7,3 с. Регистрируются обычно не 3-электроны, а жесткие у-кванты с энергиями 6,1, 6,9 и 7,1 МэВ, возникающие при переходе продукта распада — изотопа — в основное состояние. Примером использования ядерных реакций для элементного анализа может служить использование ракции 4Ве (у, п)4Ве для анализа на бериллий. Эта реакция имеет на редкость низкий порог 1,66 МэВ (обычно порог реакции (у, п) лежит в области 10 МэВ). Регистрируются вылетающие нейтроны. Малость порога, во-первых, делает метод исключительно селективным, а во-вторых, дает возможность использовать для активации дешевые и простые в обращении изотопные источники у-излучения.  [c.688]

В теплообменниках с внутренними источниками энергии применяются не два, как обычно, а оДин теплоноситель, который отводит теплоту, выделенную в самом аппарате. Примером таких аппаратов могут служить ядерные реакторы, электронагреватели и другие устройства. Независимо от принципа действия теплообменные аппараты, применяющиеся в различных областях техники, как правило, имеют свои специальные названия. Эти названия определяются технологическим назначением и конструктивными особенностями теплообменных устройств. Однако с теплотехнической точки зрения все аппараты имеют одно назначение — передачу теплоты от одного теплоносителя к другому или поверхности твердого тела к движущимся теплоносителям. Последнее и определяет те общие положения, которые лежат в основе теплового расчета любого теплообменного аппарата.  [c.442]


Выполненные в последнее десятилетие широкие технико-экономические исследования и проектно-конструкторские разработки в области использования ядерной энергии для целей теплоснабжения позволили обосновать возможность создания крупных систем теплоснабжения с атомными источниками теплоты (АИТ). При этом особое внимание уделяется нахождению оптимальны х параметров АИТ, решению вопросов транспорта теплоты и выбору параметров сетевого теплоносителя (пара и горячей воды). Эти вопросы должны рептаться с учетом существенной удаленности энергоисточников от потребителей теплоты, разнообразия технологических схем отпуска теплоты и многоконтурности производства пара и горячей воды, относительно низких энергетических параметров пара, высокой концентрации тепловых нагрузок и многих других факторов. Обоснованный выбор основных направлений развития систем теплоснабжения с АИТ возможен только на основе комплексного рассмотрения всех звеньев такой системы, с учетом ее взаимосвязей с ЭК и его подсистемами, а также другими отраслями народного хозяйства.  [c.117]

В связи с освоением космического пространства возникла потребность в энергии, необходимой для работы аппаратуры в космических летательных аппаратах. Вначале ядерные устройства использовались в качестве вспомогательного источника энергии, основным же источником служили солнечные элементы, аккуму-ляторньй батареи и т. п. С тех пор как ядерная энергия стала основным источником энергии, была создана серия устройств типа SNAP (сокращенное название источника вспомогательной ядерной энергии), способных полностью обеспечивать энергией космическую аппаратуру. В этих устройствах реализуются различные способы преобразования энергии, включая термоэлектрический, термоионный системы Штирлинга, Рэнкина и Брайтона. Обычно в первых двух системах используется изотопный источник теплоты, а в третьей системе — реактор. Требования в отношении топлива для реакторных систем аналогичны соответствующим требованиям для других ядерных реакторов, поэтому детально будет рассмотрен только изотопный источник тепловой энергии.  [c.453]

Вероятность столкновения частицы (например, нейтрона) с атомным ядром зависит от площади мишени, то есть от поперечного сечения ядра. Однако при определении вероятности возникновения ядерной реакции следует учитывать, что атомное ядро представляет собой специфический источник ядерных и электрических сил, и поэтому имеет смысл говорить об эффективном поперечном ядерном сечении, которое, конечно, зависит от различных свойств данного ядра. Далее мы эту величину будем называть просто ядерным сечением, помНя, естественно, что оно не является собственно поперечным сечением атомного ядра. Величина ядерного сечения зависит и от свойств элементарных частиц, участвующих в ядерной реакции. Поскольку радиус действия электрических сил теоретически бесконечен, то, следовательно, для заряженных частиц, таких, как протоны и электроны, атомное ядро, благодаря своему положительному заряду, будет иметь ядерноё сечение, отлич ное от того, которое характерно для случая взаимодействия ядра с нейтроном, так как сфера действия ядерных сил не превышает см. Величине ядерного сечения присущи и другие зависимости от энергии пролетающей частицы, от конкретного типа ядерной реакции. Так, например, нейтрон может различным способом взаимодействовать с ядром урана он способен вызвать расщепление ядра, но может и просто быть захвачен ядром (без последующего расщепления). Для каждого из этих случаев существуют различные ядерные сечения, то есть имеются различные вероятности возникновения каждого из этих ядерных взаимодействий.  [c.73]

Электроэнергию на базе геотермальных горячих источников вырабатывают также в США, Мексике, Японии, СССР (как уже указывалось ранее в разделе, посвященном ресурсам) и Исландии. В Сальвадоре подобная станция находилась в стадии конструкторских разработок в 1975 г. В Новой Зеландии в радиусе 36 км от Вайракей пар получают с небольших глубин, а в результате бурения на глубину до 610 м можно получать пар высокого давления. Около 80 % по массе от получаемого объема составляет горячая вода, которую необходимо отделить от пара перед тем, как использовать его в паровых турбинах. Среднее количество энергии, поступающей в национальную энергосистему из различных источников энергии в год, составляет 1100 ГВт. Установленная мощность 192 600 кВт, причем доля пара высокого давления снижается. В Каверау (Новая Зеландия) действует установка мощностью 10 000 кВт. В районе Гейзеров (США) мощность действующей установки составляет 290 000 кВт. Общая установленная мощность в целом по миру составляла 1,01 ГВт. Капитальные и эксплуатационные издержки находятся в диапазоне от 0,14 до 0,25 пенс/МДж в зависимости от местных условий. Сравнение с другими способами получения электроэнергии, проведенное Ле-ардини на основе данных 1970 г., дает упомянутые выше издержки (пенс/МДж) в размере 0,16 — для гидроэнергии, 0,38 — для пара и 0,40 — для ядерной энергии.  [c.227]

Выводы по проблеме потребностей в уране. Последние изменения в положении с ресурсами и добычей урана были внесены в результате роста запасов в Австралии, открытия новых месторождений в Канаде, переоценки потенциала ЮАР, изменений резервов США и попыток оценить ее полные ресурсы. Можно сказать, что на выводы о количестве и доступности ресурсов урана влияют следующие группы факторов связанные с собственно производственной стороной вопроса (например, технический прогресс в разведочных работах, строительстве рудников и добыче) связанные с развитием ядерной энергетики в целом, включая потребителей (например, попытки стабилизировать добычу) наконец, внешние по отношению к ядерной энергетике (например, правительственная политика и обеспеченность финансовыми, людскими и материальными ресурсами в условиях конкуренции с другими отраслями энергетики). Перечисленные факторы влияют и на потребление урана. На любой прогноз потребности в ядерной энергии влияют политика отрасли в вопросах складского хранения, выбора типа реакторов и другого оборудования, отношение к перспективным типам реакторов. Ценообразование и финансирование, различия в видах контрактов влияют в основном на отношения между поставщиками и потребителями, хотя нередки здесь и вме-щательства государства. За пределами отраслевой сферы находятся изменения в общественном мнении, в правительственной политике и к конкурентоспособности других энергоисточников, но подобные факторы оказывают наиболее глубокое влияние на развитие отрасли. Положение ядерной энергетики является только частью глобальной ситуации, и на него, как и на положение других энергетических отраслей, оказывают влияние мировые экономические условия, например, падение спроса на энергию в 1973— 1974 гг. с последующими трудностями для развития отрасли. Практически нет сомнения, что, несмотря на существование антиядерного лобби, роль ядерной энергии в мировом потреблении энергии будет расти, причем в течение ближайших 20 лет будет преобладать ввод тепловых реакторов быстрые реакторы могут быть введены в конце 80-х годов и стать преобладающими вскоре после 2000 г. Активное внедрение ядерного синтеза может начаться после 2020 г., параллельно с развитием использования солнечной энергии и других возобновляемых источников энергии, которые со временем будут играть ведущую роль.  [c.302]

Из рис. 1.2 видно, что при указанных выше темпах роста потребления запасы извлекаемого органического ископаемого топлива без привлечения других источников энергии будут близки к иссяканию на нашей планете уже к концу XXI в. Столь опасное развитие событий может быть полностью предотвращено прежде всего благодаря форсированному и широкому использованию такого, не зависящего от солнечной энергии источника, как ядерное топливо, а также эффектявиому применению ва все больших масштабах различных источников энергии, непрерывно восстанавливаемых (возобновляемых) под действием солнечного излучения,— это энергия речных стоков, биомасса (древесина, отходы сельского хозяйства и промышленности), установки, основанные на использовании концентрированной энергии солнца, ветра, тепловой и волновой энергии океанов и др.  [c.12]


Измерение интенсивности нейтронов. В настоящее время в продаже нет еще приборов, с помощью которых можно было бы измерять слабые потоки быстрых нейтронов на фоне больших интенсивностей у-излучения, обычно присутствующего при получении нейтронов с помощью ядерных реакций. Однако каждой лаборатории, где имеются интенсивные источники нейтронов, вполне доступно устройство нейтронных детекторов специального лабораторного типа. Такой прибор состоит из двух работающих вместе ионизационных камер с высоким давлением, одна из которых чувствительна к у-лучам и нейтронам, а другая, в основном, только к у-лучам. Для счета быстрых нейтронов может применяться и так называемый длинный счетчик , однако последний регистрирует нейтроны, независимо от их энергии, так что показания такого прибора невозможно перевестп в единицы г, если энергия нейтронов не известна из других источников.  [c.306]

Исследовательская работа, которая до.чжнр быть проведена, и получение заметных ко.чичеств нового топлива требуют времени, которое измеряется годами. Это обстоятельство должно учитываться при всяком рассмотрении вопроса о то.м, когда ядерная энергия сможет дать заметную долю энергии, получаелюй в настоящее время пз других источников .  [c.324]

Тепловая машина, преобразующая тепло в механическую или непосредственно в электрическую энергию, обязательно включает в себя три составных звена источник тепловой энергии (реакция горения органического топлива, ядерный распад и т. д.), преобразователь (паровая машина, двигатель внутреннего сгорания, паровая или газовая турбина, термоэлектрические, магнитогидродинамические, термоэмиссионные преобразователи), и устройство для отвода неиспользованной тепло-, вой энергии. Как правило, эти звенья располагаются в непосредственной близости друг от друга в пределах одной энергоустановки или агрегата, и передача тепла  [c.3]

После начала полетов в околоземное космическое пространство возникла задача энергообеспечения космических аппаратов различных типов. Одним из основных направлений этого развития были батареи на солнечной энергии, другим направлением - ядерные источники энергии. В этом плане проводились различные исследования и реализовывались различные проекты. К ним, в частности, относилась разработка компактных ядерных реакторов с термоэлектрическими полупроводниковыми преобразователями, реакторов-преобразователей с термоэмиссионными элементами, объединение ядерных реакторов с электрореактивными двигателями и создание на этой основе ядерных электрореактивных двигателей. Эти исследования проводились в различных институтах МСМ, прежде всего, в РНЦ Курчатовский институт , ГНЦ ФЭИ , ННО Луч и НИКИЭТ.  [c.367]

Применение ядерных энергоустановок в космосе в соответствии с принятой идеологией предусматривает их использование только в тех сферах, где нет возможности решить задачу с помощью других источников энергии. Г лавным источником энергии в космосе на околоземных орбитах сегодня являются солнечные элементы, мощность которых за последнее время значительно выросла. Если еще несколько лет назад разработчики ЯЭУ ориентировались на зфовень мощности 20 кВт, то сегодня такой уровень планируется обеспечивать солнечными источниками энергии. Радиоизо-топные источники питания, конечно, также используются, но они из-за малой мощности имеют достаточно специфическую область применения.  [c.368]

Проекты вечных двигателей, о которых шла речь в предыдущем разделе, в большинстве своем относятся к 20-30-м годам нашего столетия. С этого времени минуло уже 50 лет, в течение которых развитие науки и техники шло поистине семимильными шагами. Интенсивный поиск новых энергетических источников завершился открытием способов освобождения и использования ядерной энергии. Прогресс, достигнутый за это время наукой, а также приобретенный человечеством практический опыт доказали неосуществимость вечного двигателя никакой, даже самый совершенный механизм, построенный руками человека, не сможет удовлетворить условиям, содержащимся в самом определении перпетуум мобиле. И тем не менее на всем протяжении указанного периода новые проекты вечных двигателей все же продолжали возникать. И ныне ситуация, на наш взгляд, не намного улучшилась. Например, в 1970-1973 гг. в Пражское управление по делам изобретений и открытий поступало ежегодно до 50 новых проектов перпетуум мобиле. Несколько ранее, в 1968-1970 гг., этому управлению было предложено 17 проектов только электромагнитных вечных двигателей, не считая большого числа механических, гидравлических, пневматических и других перпетуум мобиле.  [c.215]

Кроме перечисленных четырех методов (которые будут подробнее рассмотрены ниже) в ядерной физике применяются и другие методы нейтронной спектроскопии. В одном из них для получения мо ноэнергетических нейтронов используются некоторые ядерные реакции и фотонейтронные источники (см. 32), в другом энергия нейтронов определяется по энергии образующихся ядер отдачи (см. 43, п. 1 и 44, п. 3). Заметим, что последний способ не требует никакой (ни пространственной, ни временной) мо нохроматизации пучка нейтронов.  [c.330]

Мезонные теории ядерных сил строятся по аналогии с квантовой электродинамикой. Как известно, в квантовой электродинамике электромагнитное поле рассматривается совместно со связанными с ним частицами — фотонами. Оно как бы состоит из фотонов, которые являются его квантами. Энергия поля равна сумме энергии квантов. Фотоны возникают (исчезают) при испускании (поглощении) электромагнитного излучения (например,. света). Источником фотонов является электрический заряд. Взаимодействие двух зарядов сводится к испусканик> фотона одним зарядом и поглощению его другим. При такой постановке вопроса становится возможным рассмотрение новых, явлений, относящихся к классу взаимодействий излучающих систем с собственным полем излучения. Этим путем удается,, например, объяснить аномальный магнитный момент электрона и мюона (см. 10, п. 3 И, п. 6), лэмбовский сдвиг уровней в тонкой структуре атома водорода и ряд других тонких эффектов.  [c.9]

Основными областями технического применения термодинамики являются анализ циклов тепловых двигателей и теплосиловых установок, в которых полезная внешняя работа производится за счет выделяющейся при сжигании топлива теплоты анализ циклов ядерных энергетических установок, в которых источником теплоты служит реакция деления расщеп-ляюпгихся элементов анализ принципов и методов прямого получения электрической энергии, в которых стадия превращения внутренней энергии тел или, как говорят еще, химической энергии в теплоту не имеет места, и последняя непосредственно преобразуется в полезную внешнюю работу в форме энергии электрического тока анализ процессов тепловых машин (компрессоров и холодильных машин), в которых за счет затраты работы рабочее тело приводится к более высокому давлению или к более высокой температуре анализ процессов совместного или комбинированного производства работы и получения теплоты (или холода) для технологических или бытовых нужд анализ процессов трансформации теплоты от одной температуры к другой.  [c.513]

Основная доля падающих на границу атмосферы КЛ имеет галактическое происхождение (галактические КЛ). Источниками этих частиц являются сверхновые и их остатки (включая нейтронные звезды) [1, 2]. Часть КЛ (в основном с энергиями 10 —10 эВ) приходит к Земле от Солнца. Солнечные КЛ ускоряются во время сильных хромосферных вспышек и других активных процессов на Солнце [3]. Частицы самых высоких наблюдаемых анергий (Я> 10 - -10 эВ), возможно, имеют внегалактическое происхождение. Они ускоряются в активных галактиках [2]. Источником электронов с энергиями <3-10 эВ в межпланетной среде является магнитосфера Юпитера [4]. При энергиях 10 —10 эВ обнаружена так называемая аномальная ядерная компонента КЛ. Эти частицы ускоряются во внешних областях гелиосферы — на внешних границах области, занятой солнечным ветром [5].  [c.1173]

Так, для получения пучка уизлучения высокой энергии электронный пучок направляют на тугоплавкую мишень, из которой вылетает мощный, но, к сожалению, сильнейшим образом размытый по энергии пучок у-квантов. Большинство электронных ускорителей в настоящее время используется именно как источники у-излучения, а не электронов. Получающиеся на электронных ускорителях пучки тормозного Y-излучения хорошо коллимированы и имеют интенсивность, достаточную для проведения исследования различных фото-ядерных, фотомезонных и других фотореакций. Серьезным недостатком пучка тормозного излучения является неудачная форма его энергетического спектра. Спектр размазан по всей допустимой области энергий от энергии электронов тах до нуля. При этом наибольшая часть фотонов приходится на область низких энергий, так как везде, за исключением краев, кривая энергетического распределения фотонов ведет себя как (рис. 9.4). Эта размазанность тормозного спектра сильно осложняет экспериментальные исследования взаимодействий у-квантов с ядрами и элементарными частицами.  [c.480]


Плотно заселенные зоны диаграммы Герцшпрунга — Рассела — главная последовательность и последовательности красных гигантов и белых карликов — соответствуют наиболее длительным стадиям эволюции звезд. Действительно, при случайной выборке звезд вероятность занести на диаграмму Герцшпрунга — Рассела звезду, находящуюся в состоянии, переходном от одной длительной стадии к другой, является, очевидно, очень малой. Мы приходим к выводу о том, что в эволюции звезд следует различать во всяком случае три стадии главная последовательность, красный гигант, белый карлик. Отождествление источников энергии звезд с экзотермическими ядерными реакциями и теоретическая разработка звездных моделей позволили решить нетривиальный вопрос о направле- НИИ звездной эволюции. Оказалось, что средняя звезда начинает свой видимый жизненный путь как звезда главной последовательности, проходит стадию красного гиганта и завершает жизнь белым карликом.  [c.601]


Смотреть страницы где упоминается термин Другие источники ядерной энергии : [c.68]    [c.131]    [c.16]    [c.34]    [c.77]    [c.18]    [c.320]    [c.109]    [c.11]   
Смотреть главы в:

Космическая техника  -> Другие источники ядерной энергии



ПОИСК



Источник энергии

Ядерная энергия



© 2025 Mash-xxl.info Реклама на сайте